SRI VENKATESWRA UNIVERSITY COLLEGE OF ENGINEERING::TIRUPATI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

R20 - REGULATIONS

SCHEME AND SYLLABUS

INSTITUTE MISSION, VISION

MISSION

- To be recognized as a premier institution offering Engineering Education programs, training human resources oriented to problem solving and system development.
- > To carry out research in Engineering and Technology relevant to all segments of society
- > To assume leadership in sustainable technological growth of the Indian society
- > To be a natural destination for excellence and diversity in thought and practice

VISION

The Vision of Sri Venkateswara University College of Engineering is to be the leader in the creation and development of globally competitive human capital in Engineering Education for Technological, Economical and Social Enrichment of the Society, through its open and flexible Academic Programmes.

DEPARTMENT MISSION, VISION

MISSION

- > To provide the necessary domain expertise and infrastructure to the students
- To make available the advanced laboratories, application oriented engineering principles for students and researchers
- To offer research and industry orientation to become successful service oriented technocrats

VISION

The department aims at catering to the needs and aspirations of the people and their development, reach to the world through state of art technologies of Electrical and Electronics Engineering and to serve the society at large.

	PROGRAM OUTCOMES
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3	Design / Development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.
PO4	Conduct investigations of complex problems : Use research – based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PROGRAM SPECIFIC OUTCOMES									
PSO1	Generate, Transmit, Distribute, Control and Utilize electrical power effectively by analyzing and applying appropriate techniques and hardware/software tools.									
PSO2	Develop different electrical and electronics circuits/models using semiconductor and Power Electronic devices considering the environmental and societal needs.									

	PROGRAM EDUCATIONAL OBJECTIVES									
PEO1	Graduates will, demonstrate professional behavior to cater the global needs of the industry and society.									
PEO2	Graduates will pursue higher education to upgrade their professional and research Skills and inculcate the attitude of lifelong learning.									
PEO3	Graduates will develop the qualities like creativity, leadership, team work and professional ethics contributing to the societal growth.									

SCHEME

R20 - REGULATIONS

		SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI – 517 502												
		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-20 Regulations)												
S.No		B.Tech (Electrical and Electronics Engineering), w.e.f. 2020-21												
		I- SEMESTER												
				Scheme	of Instruct	ion (Hours/	Week)		Sc	heme of Evaluation				
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total			
1	MA101	BST	Mathematics-I	3	1	-	4	4	40	60	100			
2	PY102	BST	Modern Physics	3	1	-	4	4	40	60	100			
3	CS103	BET	Programming for problem solving	2	1	-	3	3	40	60	100			
4	CE104	BET	Engineering Mechanics	3	1	-	4	4	40	60	100			
5	ME105	BEL	Workshop/ Manufacturing Practice	-	-	3	3	1.5	40	60	100			
6	CS106	BEL	Programming for problem solving lab	-	-	3	3	1.5	40	60	100			
7	CE107	МСТ	Environmental Science	4	-	-	4	0	100	-	100			
		То	tal	15	04	06	25	18	340	360	700			

Category	Credits
Basic Science Courses	8
Engineering Science Courses	10
Environmental Science	0
TOTAL CREDITS	18

		S	RI VENKATESWARA U	NIVERSI	FY COLL	EGE OF E	NGINEI	ERING: T	IRUPATI –	517 502					
		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-20 Regulations)													
All Martin of		B.Tech (Electrical and Electronics Engineering), w.e.f. 2020-21													
		II- SEMESTER C Scheme of Instruction (Hours/Week) Scheme of Evaluation													
	Course Code			Scheme	of Instruct	ion (Hours/	Week)	No. of		cheme of Evaluation					
S.No		Category	ategory Course Title	Credits	Sessional Marks	Semester End Examination Marks	Total								
1	MA201	BST	Mathematics-II	3	1	-	4	4	40	60	100				
2	CY202	BST	Engineering Chemistry	3	1	-	4	4	40	60	100				
3	EN203	HST	English	2	-	-	2	2	40	60	100				
4	EE204	BET	Electrical Circuits	3	1	-	4	4	40	60	100				
5	ME205	BEL	Engineering Graphics and Design	2	-	3	5	3.5	40	60	100				
6	EN206	HSL	English Communication Lab	-	-	3	3	1.5	40	60	100				
	Total			13	03	06	22	19	240	360	600				

Category	Credits
Basic Science Courses	8
Engineering Science Courses	7.5
Humanities and social science	3.5
TOTAL CREDITS	19

		SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI – 517 502												
		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-20 Regulations)												
Service and		B. Tech (Electrical and Electronics Engineering), w.e.f. 2020-21												
		III- SEMESTER												
				Schem	e of Instruct	tion (Hours/V	Veek)		Sche	eme of Evaluation				
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total			
1.	MA301B	BST	Mathematics –III	3	-	-	3	3	40	60	100			
2.	EE302C	BET	Electro Magnetic Fields	3	-	-	3	3	40	60	100			
3.	EE303C	РСТ	Network Analysis	3	1	-	4	4	40	60	100			
4.	EE304C	РСТ	D.C. Machines and Transformers	3	1	-	4	4	40	60	100			
5.	EE305C	РСТ	Analog Electronics	3	-	-	3	3	40	60	100			
6.	EE306L	PCL	Electrical Circuits and Networks Lab	-	-	3	3	1.5	40	60	100			
7.	EE307L	PCL	D.C. Machines and Transformers Lab	-	-	3	3	1.5	40	60	100			
8.	EE309S	SC1	Computer Skills	1	-	2	3	2	40	60	100			
9.	MC310A	MCT1	Constitution of India	2	-	-	2	0	100	-	100			
		Total		18	02	08	28	22	420	480	900			

Category	Credits
Basic Science Courses	3
Engineering Science Courses	3
Professional Core Course	14
Skill Oriented Course	2
TOTAL CREDITS	22

		SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI – 517 502												
A CONTRACTOR		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-20 Regulations)												
A Comment	B. Tech (Electrical and Electronics Engineering), w.e.f. 2020-21													
		IV- SEMESTER												
				Scheme	of Instruct	ion (Hours/V	Veek)	_	Sche	eme of Evaluation	ι			
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total			
1.	EE401C	РСТ	Power systems-I	3	1	-	4	4	40	60	100			
2.	EE402C	РСТ	Induction Motors and Synchronous Machines	3	1	-	4	4	40	60	100			
3.	HS403C	HST	Managerial Economics and Accountancy	3	-	-	3	3	40	60	100			
4.	EE404C	РСТ	Digital Electronics	3	-	-	3	3	40	60	100			
5.	EE405C	РСТ	Signals and Systems	3	-	-	3	3	40	60	100			
6.	EE406L	PCL	Induction Motors and Synchronous Machines Lab	-	-	3	3	1.5	40	60	100			
7.	EE407L	PCL	Analog and Digital Electronics Lab	-	-	3	3	1.5	40	60	100			
8.	EE409S	SC2	Python Programming	1	-	2	3	2	40	60	100			
9.			NCC / NSS / NSO Activities		60 Hrs		2	-	-	-	-			
	•	•	Total	16	02	08	28	22	320	480	800			

- Note: 1. Community Service Internship (Mandatory) Throughout the semester (45 Hrs, 1.5 – credits, 100 – Marks to be given by mentors) – (Performance will be Reflected in V Semester).
 - **2.** NCC / NSS / NSO –Students should acquire at least 45 Hrs out of 60 Hrs from I semester to IV Semester.

Category	Credits
Professional Core Course	17
Humanities and social science	3
Skill Oriented Course	2
NCC / NSS / NSO Activities	0
TOTAL CREDITS	22

		SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI – 517 502												
		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System (R-20 Regulations)												
Star and			B. Tech (Electri	cal and Ele	ectronics Ei	ngineering),	w.e.f. 20	20-21						
		V- SEMESTER												
				Scheme	of Instructi	on (Hours/W	/eek)		Sche	me of Evaluation	L			
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total			
1.	EE501C	РСТ	Power systems-II	3	-	-	3	3	40	60	100			
2.	EE502C	РСТ	Linear Control Systems	3	-	-	3	3	40	60	100			
3.	EE503C	РСТ	Power Electronics	3	-	-	3	3	40	60	100			
4.	EE504C	РЕТ	Professional Elective - I	3	-	-	3	3	40	60	100			
5.	EE505C	OET	Open Elective – I (MOOCs)	3	-	-	3	3	100	-	100			
6.	EE506L	PCL	Control Systems Lab	-	-	3	3	1.5	40	60	100			
7.	EE507L	PCL	Power Electronics Lab	-	-	3	3	1.5	40	60	100			
8.	EE508S	SC3	MATLAB Laboratory	1	-	2	3	2	40	60	100			
9.	MC509A	MCT2	Universal Human Values (Mandatory Course)	2	-	-	2	0	100	-	100			
10.	EE510	Internship	Community Service Internship		45 H	Irs		1.5	100	-	100			
		Tot	al	18	-	08	26	21.5	580	420	1000			

Professional Elective – I

- Wind and Solar Energy Systems Electrical Distribution System Electrical Safety i.
- ii.
- iii.

Category	Credits
Professional Core Course	12
Professional Elective courses	3
Open Elective Course/Job oriented elective	3
Skill Oriented Course	2
Universal Human Values	0
Community Service Internship	1.5
TOTAL CREDITS	21.5

			SRI VENKATESWARA UNIVER	SITY COL	LEGE OF	ENGINEE	RING: T	TRUPATI	- 517 502			
		Departmer	nt of Electrical and Electronics Enginee	ne of Instru	ction- Choice Based Credit System(R-20 Regulations)							
			B. Tech (Electrical and Electronics Engineering), w.e.f. 2020-21									
				VI-S	EMESTER	ł						
				Scheme	e of Instruct	ion (Hours/V	Week)		Sche	me of Evaluation		
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total	
1.	EE601C	РСТ	Power system Analysis	3	1	-	4	4	40	60	100	
2.	EE602C	РСТ	Electrical and Electronics Measurements	3	-	-	3	3	40	60	100	
3.	EE603C	РСТ	Micro Processors and Micro Controllers	3	-	-	3	3	40	60	100	
4.	EE604C	РСТ	Utilization of Electrical Power	3	-	-	3	3	40	60	100	
5.	EE605C	РЕТ	Professional Elective - II	3	-	-	3	3	40	60	100	
6.	EE606C	OET	Open Elective – II (MOOCs)	3	-	-	3	3	100	-	100	
7.	EE607L	PCL	Microprocessors and Micro Controllers Lab	-	-	3	3	1.5	40	60	100	
8.	EE608L	PCL	Electrical and Electronics Measurements Lab	-	-	3	3	1.5	40	60	100	
9.	EE609S	SC4	Java Programming	1	-	2	3	2	40	60	100	
10.	MC610 A	MCT2	Professional Ethics in Engineering (Mandatory Course)	2	-	-	2	0	100	-	100	
		Т	otal	21	01	08	30	24	520	480	1000	

Professional Elective – II

i. Advanced Control Systems ii. Energy Auditing and Management iii. Special Machines

Note: Summer Industrial Internship (Mandatory) Two months (Duration - 60 Hrs, 3 – credits, 100 – Marks to be given by internal evaluation committee) – during summer vacation (Performance will be reflected in VII Semester, Online / Offline mode

Category	Credits
Professional Core Courses	16
Professional Elective Courses	03
Open Elective Course / Job Oriented Elective	03
Professional Ethics in Engineering	00
Skill Oriented Course	02
Total Credits	24

			SRI VENKATESWARA UNIVI	ERSITY CO	OLLEGE O	F ENGINE	ERING	: TIRUPA	TI – 517 502	2	
		Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-20 Regulations)									
Starter B	B. Tech (Electrical and Electronics Engineering), w.e.f. 2020-21										
		1	T	1	- SEMESTI			I			
				Scheme	of Instructi	on (Hours/W	Veek)		Sc	heme of Evaluation	
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total
1.	EE701C	РСТ	Power System Protection	3	-	-	3	3	40	60	100
2.	EE702C	РЕТ	Professional Elective – III	3	-	-	3	3	40	60	100
3.	EE703C	PET	Professional Elective – IV	3	-	-	3	3	40	60	100
4.	EE704C	РЕТ	Professional Elective - V	3	-	-	3	3	40	60	100
5.	EE705C	OET	Open Elective – III (MOOCs)	3	-	-	3	3	100	-	100
6.	EE706C	OET	Open Elective – IV (MOOCs)	3	-	-	3	3	100	-	100
7.	EE707 L	PCL	Power System Simulation Lab	-	-	3	3	1.5	40	60	100
8.	EE708S	SC5	IoT Lab	1	-	2	3	2	40	60	100
9.	EE709I	Internship	Summer Industrial Internship		2 Months		-	3	100	-	100
		То	tal	19	-	05	24	24.5	540	360	900

Pro	Professional Elective – III			sional Elective – IV	Professional Elective – V			
i	i. i.	Electrical Vehicles Flexible AC	i.	Power System Operation and Control	i. ii.	HVDC Transı High	nission Voltage	
ii	i.	Transmission Systems Restructured Power Systems	ii. iii.	Power Semiconductor Controlled Drives Power Quality	iii.	Engineering Smart Grid		

Category	Credits
Professional Core Course	4.5
Professional Elective courses	9
Open Elective Course/Job oriented	6
elective	
Summer Industrial Internship	3
Skill Oriented Course	2
TOTAL CREDITS	24.5

	SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI – 517 502										
	Department of Electrical and Electronics Engineering-Scheme of Instruction- Choice Based Credit System(R-2									Regulations)	
Att manual of		B. Tech (Electrical and Electronics Engineering), w.e.f. 2020-21									
	VIII- SEMESTER										
				Scheme	of Instructio	on (Hours/W	eek)		Scheme of Evaluation		
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination	Total
									IVIGINS	Marks	
1.	EEPROJ801	Major project	Project Work and Internship	-	-	24	24	12	40	60	100
		Total		-	-	24	24	12	320	480	800

Category	Credits
I- SEMESTER	18
II- SEMESTER	19
III- SEMESTER	22
IV- SEMESTER	22
V- SEMESTER	21.5
VI- SEMESTER	24
VII- SEMESTER	24.5
VIII- SEMESTER	12
TOTAL	CREDITS 163

		SRI	VENKATESWARA UNIV	ERSITY	COLLEG	E OF ENG	GINEER	ING: TIR	UPATI – 517	7 502	
	Dep	artment of E	lectrical and Electronics Eng	gineering-S	Scheme of]	Instruction-	Choice]	Based Cred	lit System (R	-20 Regulations))
Birr many are			B. Tech (Electrical	(HONO)	URS DEG	REE)					
									Sche	me of Evaluation	1
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total
1.	EEHN01	HON	Electrical Machine Design	3	1	-	4	4	40	60	100
2.	EEHN02	HON	Advanced Power System Protection	3	1	-	4	4	40	60	100
3.	EEHN03	HON	Digital Control Systems	3	1	-	4	4	40	60	100
4.	EEHN04	HON	Advanced Power Electronics	3	1	-	4	4	40	60	100
5.	EEHN05	HON	Hybrid Electrical Vehicles	3	1	-	4	4	40	60	100
6.	EEHN06	HON	Industrial Applications of Electrical Engineering	3	1	-	4	4	40	60	100

Note: A student shall register for 4 (Four) Subjects from the above list, as per the R20-Regulations for B.Tech (HONOURS) Degree.

		SRI V	ENKATESWARA UN	IVERSITY	COLLEG	E OF ENG	INEERI	NG: TIRU	PATI – 517	502	
۲	Depar	rtment of Elec	trical and Electronics E	Choice B	ased Credi	t System (R-2	20 Regulations)				
Star Barre			B. Tech (Electri	ical and Ele	ectronics E	ngineering)	(MINO)	R DEGRE	E)		
									Sch	eme of Evaluation	
S.No	Course Code	Category	Course Title	Lecture	Tutorial	Practical	Total	No. of Credits	Sessional Marks	Semester End Examination Marks	Total
1.	EEMN01	MIN	Electrical Circuits and Networks	3	1	-	4	4	40	60	100
2.	EEMN02	MIN	Electrical Machines	3	1	-	4	4	40	60	100
3.	EEMN03	MIN	Power Systems	3	1	-	4	4	40	60	100
4.	EEMN04	MIN	Control Systems	3	1	-	4	4	40	60	100
5.	EEMN05	MIN	Power Electronics	3	1	-	4	4	40	60	100
6.	EEMN06	MIN	Electronics Engineering	3	1	-	4	4	40	60	100

Note: A student shall register for 4 (Four) Subjects from the above list, as per the R20-Regulations for B.Tech (MINOR) Degree.

SYLLABUS

R – 20 REGULATIONS

SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING: TIRUPATI DEPARTMENT OF ELECTICAL AND ELECTRONICS ENGINEERING R20 REGULATIONS SYLLABUS

<u>I – SEMESTER</u>

MA101		MATHEMATICS –I	4 Credits			
Sessional	Marks: 40	3L:1T:0P	End Examination Marks: 60			
1. 2. 3. 4. 5. 6. 7. 8.	Analyze diff Apply differ Use transfor Use shift the solutions of Solve an ini Laplace tran Expand func Optimize the Draw an app symmetry, t	At the end of the course, students will be able erential equations and solve them ential equations to engineering problems. mation to convert one type into another type pr orems to compute the Laplace transform, inver- second order, linear equations with constant co tial value problem for an n th order ordinary d sform. tions as power series using Maclaurin's and Ta problems related to OR, Computer science, Pr roximate shape by the study of some of its imp angents, regions enclosing curve tracing m	esumably easier to solve. rse Laplace transform and the efficients. ifferential equation using the aylor's series robability and Statistics portant characteristics such as aethod to find length, area,			
	curves.					
		UNIT I				
coeffic	ients-particul	ns: Linear differential equations of second an ar integrals-homogeneous differential equation rs-simulation equations.	_			
	• of pulation	UNIT II				
-		I: Laplace transforms of standard functions-in tegrals-derivatives of transforms-integrals of tr UNIT III				
-	Laplace Transforms II: Transforms of periodic functions-convolution theorem-applications to solution of ordinary differential equations. UNIT IV					
minima	a for function comparison,	d Mean value theorems - Taylor's and Mac ns of two variables - Infinite series - Converg Ratio tests - Alternating series - Leibnitz's ru UNIT V	ence Tests series of positive			
Multip	le Integrals: (Curve tracing (both Cartesian and polar coordi	nate) - Evaluations of double			

and Triple integrals-change of order of integrations-change of variables of integrations-simple applications to areas and volumes.

Text/Reference Books

- 1. B S Grewal, Higher Engineering Mathematics, 40th Edition, Khanna Publications, 2007.
- 2. M K Venkataraman, Engineering Mathematics, National Publishing Company, Chennai.
- 3. B V Ramana, Higher Engineering Mathematics, 6th Reprint, Tata McGraw-Hill, 2008.
- 4. Bali and Iyengar, Engineering Mathematics, 6th Edition, Laxmi Publications, 2006.

PY 102	MODERN PHYSICS	4 Credits
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
Course Outcom	es: At the end of the course, students will be a	ible to
	propriate competence and working knowledge	e of laws of modern Physics in
	ng advanced technical engineering courses	
	the quantum mechanics and ultimately the nen they are in motion.	quantum behavior of charged
3. Identify and Engineering	d apply appropriate analytical and mathemati g problems	cal tools of Physics in solving
4. Apply know	vledge of band theory in the area of electroni nsportation phenomenon in microdevices.	cs and understanding the basic
5. Understand	the principles in electrostatics and ele of materials.	ectromagnetics and magnetic
6. Understand	size depended properties of nano-dimension in making nano- and micro-devices for fu	
	participate deeply, creatively, and analyt technology.	tically in emerging areas o
8. Learn the b	asics of instrumentation, design of laboratory interpretation, and analysis.	techniques, measurement, data
	ltidisciplinary experiences throughout the cur	riculum.
	UNIT I	
Properties of Matte Heisenberg's Unce Wave equation – Si	tics : Wave – Particle duality – de Broglie r Waves – Davison and Germer Experiment rtainty Principle – Schrödinger's Time Inde gnificance of Wave Function – Electron in an ties and Energy Levels.	- G.P. Thomson Experiment - pendent and Time Dependen
	UNIT II	
Quantum Free Ele Theorem – Kroni	olids : Classical Free Electron Theory of Me ctron Theory – Fermi Factor – Electron i g – Penney Model – Distinction betwe ergy Band Structures.	n Periodic Potential – Bloch

UNIT III

Semiconductors – Introduction- Intrinsic and Extrinsic Semiconductors – Density of states – Carrier Concentrations at Equilibrium – Hall Effect. PN Junction Diode – Energy Band Diagram – Forward and Reverse Bias- Current – Voltage characteristics – Applications- Zener Diode – Light Emitting Diode- Photo diode -Solar Cell – Semiconductor Laser.

UNIT IV

Electromagnetism and magnetic properties of Materials:

Laws of Electrostatistics- Electric Current- Laws of Magnetism- Ampere's, Faraday's laws-

Maxwell Equations – Polarization – Permeability and dielectric constant- Polar and non-polar Dielectrics, Clausius-Mossotti equation, Applications of Dielectrics.

Magnetization – Permeability and Susceptibility- Classification of Magnetic Materials, Ferromagnetism-Magnetic Domains and hysteresis, Applications of ferromagnetic materials.

UNIT V

NanoPhysics and Nanotechnology : Introduction to Nanomaterials –Properties: Optical Properties – Quantum Confinement – Electrical properties. Synthesis of Nanomaterials: Ball milling, Arc deposition method – Chemical Vapour Deposition-Pulsed laser deposition. Characteristics of C^{60} (Zero dimensional), Carbon Nanotubes (One Dimensional) and Graphene(Two Dimensional). Applications of Nanomaterials. 10 hrs.

Text Books / Reference Books:

- 1. R.K.Gaur and S.L.Gupta ``Engineering Physics" Sultan and Chand Pub., New Delhi
- **2.** S.P.Basava Raju `` A Detailed Text Book of Engineering Physics" Sole Distributors, Subhash Stores Book Corner, Bangalore
- **3.** HitendraK.Malik and A.K.Singh ``Engineering Physics'' Tata MC Graw Hill Education PVt.Ltd., New Delhi
- **4.** M.N.Avadhanulu and P.G.Kshirsagar ``A Textbook of Engineering Physics`` S.Chand and Company Pvt.Ltd., New Delhi
- **5.** John Allison, ``Electronic Engineering Materials and Devices'' TataMcGraw Hill Publications.
- 6. B.L Theraja, "Modern physics", S.Chand& Company.
- 7. V. Raghavan "Material Science", Tata McGraw Hill Publications.
- 8. M.S.RamachandraRao and Shubra Singh, ``Nanoscience and Nanotechnology`` Wiley India Pvt.Ltd, New Delhi

CS 103	PROGRAMMING FOR PROBLEM SOLVING	3 Credits
Sessional Marks: 40	2L:1T:0P	End Examination Marks: 60

Course Objectives:

- 1. To acquire problem solving skills
- 2. To be able to develop flowcharts and algorithms for the given problem
- 3. To learn how to write modular programs in C
- 4. To enable to use arrays, pointers, strings and structures in solving problems.
- 5. To explain the difference between object-oriented programming and procedural programming.
- 6. To understand principles of object-oriented programming.

UNIT-I

Problem Solving: Problem solving techniques, Computer as a problem solving tool, Programming Languages – Machine Language, Assembly Language, Low and High-Level Languages, Procedural and Object-Oriented Languages. Algorithm definition, Features, Criteria, Flowchart definition, Basic symbols, Sample flowcharts, Problem solving aspects, Efficiency of algorithms.

Basics of C: Structure of a C program, C tokens, Keywords, Identifiers, Basic data types and sizes, Constants, Variables, Operators in C, Operator Precedence and Associativity, Expressions, Type conversions, Basic input/output statement, Sample programs.

UNIT-II

Conditional Statements: Selection statements, Decision making within a program, Simple if statement, if-else statement, Nested if-else, if-else ladder and switch-case. Iterative statements: while-loop, do-while loop, for loop, Nested loops, Infinite loops, goto, break and continue statements, Sample programs.

Functions: Introduction to modular programming and functions, Basics, Standard Library of C functions, Prototype of a function, Parameter passing, User defined functions, Recursive functions, Passing arguments to a function: Call by reference, Call by value, Storage Classes in a single source file, Scope rules, Header files, C Pre-processor.

UNIT-III

Arrays: Introduction to arrays, Definition, Declaration, Storing elements, Accessing elements, One dimensional arrays: Array manipulation; Searching, Insertion, Deletion of an element from an array, Two dimensional arrays, Addition/Multiplication of two matrices, Transpose of a square matrix, Passing array to functions, String fundamentals, String manipulations, Standard library string functions.

Pointers: Definition of pointer, pointer type declaration, pointer assignment, pointer initialization, Pointer arithmetic, Functions and Pointers, Dangling memory, Character pointers and functions, Pointers to pointers, Arrays and Pointers, Pointer arrays, Pointers and structures, Dynamic memory management functions.

UNIT-IV

Structures: Structures declaration, Structure variables, Initialization of structures, Accessing structures, Nested structures, Arrays of structures, Structures containing arrays, Structures and functions, Pointers to structures, Self-referential structures, Unions, Typedef, Bit-fields.

File Processing: Concept of Files, Text files and binary files, File opening in various modes and closing of a file, Reading from a file, Writing onto a file.

UNIT V

Introduction to Object-Oriented Programming (OOP): Need for OOP, Principles of OOP, Basics of C++ Programming, Operator Overloading, Function Overloading, Inheritance: Derived classes, Protected access specifier, Derived class constructors, Overriding member functions, Class hierarchies, Public and Private inheritance, Multiple inheritance.

Course Outcomes: At the end of the course, student will be able to

- 1. Develop and test programs in C and correct syntax and logical errors.
- 2. Implement conditional branching, iteration and recursion.
- 3. Decompose a problem into functions and synthesize a complete program.
- 4. Use arrays, pointers, strings and structures to formulate algorithms and programs
- 5. Use files to perform read and write operations.
- 6. Handle programming assignments based on class, abstraction, encapsulation, overloading and inheritance

Text Books

- 1. Ashok N Kamthane, Amit Ashok Kamthane, Programming in C, 3rd Edition, Pearson Education, 2019.
- 2. Scheldt H, C: The Complete Reference, 4th Edition, Tata McGraw-Hill, 2002.
- 3. R.G. Dromey, How to solve it by Computer, Pearson Education, 2019.
- 4. Hanly J R &Koffman E.B, "Problem Solving and Program design in C", Pearson Education, 2019.
- 5. Herbert Schildt, The Complete Reference C++, 4th Edition, Tata McGraw-Hill.

Reference Books

- 1. C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage.
- 2. Programming with C, Bichkar, Universities Press.
- 3. Programming in C, ReemaThareja, OXFORD.
- 4. C by Example, Noel Kalicharan, Cambridge.
- 5. The C++ Programming Language, Bjarne Stroustrup, 3rd Edition, Pearson Education.
- 6. Problem solving with C++: The Object of Programming, 9th Edition, Walter Savitch, Pearson Education.

CE 104	ENGINEERING MECHANICS	Credits: 4
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
Course Outcomes: At the end of the course, student will be able to		
1. apply the basic knowledge of force system.		
1. appry the basic knowledge of force system.		

2. know the types of supports occur in civil engineering structures

3. know the geometrical properties of different cross sections.

4. understand different types of stresses and strains, elastic constants.

5. understand the behavior of different internal forces under different types of loading.

UNIT I

STATICS : Basic concepts – System of force, Concurrent and non-concurrent coplanar and non- coplanar forces – Resultant – Moment of force and its application – Couples and resultant of force systems – Equilibrium of systems of forces – Free body diagrams, Equations of equilibrium of coplanar systems and spatial systems.

UNIT II

Analysis of plane trusses: Types of supports – Types of trusses – Analysis of trusses using method of joints and method of sections.

UNIT III

CENTRE OF GRAVITY AND MOMENTS OF INERTIA: Theory of Pappus – Centroids of composite figures – Areas of gravity of bodies – Moment of inertia – Parallel and perpendicular axis theorems – Moments of inertia of composite areas (rolled and built up sections) – Radius of gyration of areas.

UNIT IV

SIMPLE STRESES AND STRAINS : Elasticity and plasticity – Types of stresses and strains – Hooke's law – Stress-strain diagram for mild steel – Working stress – Factor of safety.

Lateral strain – Poisson's ratio and volumetric strain – Elastic moduli and relationship between elastic constants – Bars of varying section – Composite bars – Temperature stresses.

UNIT V

STRAIN ENERGY: Gradual, sudden and impact loading – Endurance limit principles of virtual work and its applications.

TEXTBOOKS:

- 1. Ghose D.N. Applied Mechanics and Strength of Materials.
- 2. Timoshenko & Young Engineering Mechanics.
- 3. Junarkar SB Mechanics of Structures Vol. I.
- 4. Junarkar SB Elements of Applied Mechanics.

ME 105	WORKSHOP / MANUFACTURING PRACTICE	Credits: 1.5
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Laboratory Outco	mes	
	etion of this laboratory course, students will be	able to fabricate components
with their ow		
•	o get practical knowledge of the dimensional ad	ccuracies and dimensional
_	ssible with different manufacturing processes.	1 11 1 . 6.1 .
interest.	ng different components, they will be able to pro-	oduce small devices of their
Course Outcomes	•	
	· letion of this course, the students will gain	knowledge of the different
	ng processes which are commonly emp	e
	aponents using different materials.	
	e: Five practices among	
1. Machine s		
2. Fitting sho	-	
3. Carpentry	-	
4. Electrical		
5. Welding s	hop	
6. Casting		
7. Smithy		
	ulding & Glass Cutting Examinations could inv	
-	nponents, utilizing one or More of the techniqu	les covered above.
Detailed Conter		
1. Manufactu methods	nring Methods-casting, forming, machining, joi	ning, advanced manufacturing
2. CNC mac	hining, Additive manufacturing	
• •	erations & power tools.	
	&Electronics	
5. Carpentry		
	ulding. Glass cutting	
7. Metal cast	e	
	rc welding & gas welding), brazing	tions
	e content is learnt by online videos/ppt presenta	
Text / Reference	e Books:	
•	udhury S.K., HajraChoudhury A.K.andNirjh	•
	Technology", Vol. I 2008and Vol. II 2010, Me	edia promoters and Publishers
-	nited, Mumbai.	· · · · · · · · · · · · · · · · · · ·
	n S. and Steven S. Schmid ManufacturingF	'ngineeringand Technology'
4 th edition	, PearsonEducationIndiaEdition,2002.	

- 3. GowriP.Hariharanand A. SureshBabu, Manufacturing Technology–I" Pearson Education, 2008.
- 4. Roy A. Lindberg, processes and Materials of manufacturing", 4th edition, Prentice Hall.
- 5. RaoP.N., "ManufacturingTechnology", Vol. I & II, TataMcGrawHillHouse, 2017

CS 106	PROGRAMMING FOR PROBLEM SOLVING LAB	Credits: 1.5
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Course Objectives:		
	posure to problem-solving through program	ming
-	rudent on the concepts of the C- Programmin	-
TTI C 11		· · · · · · · · · · · · · · · · · · ·
••••	ms shall be developed and executed in Progr	amming Language C.
-	conditional control construct. Iterative statements (while, do-while, for).	
-	recursive procedures	
Ũ	arrays, matrices (single and multi-dimension	al arrays)
-	ng user defined functions, demonstrating p	•
	and call by reference.	arameter pussing methods viz.
-	ng different library functions viz. ctype.h, m	ath.h. stdio.h. stdlib.h. string.h.
	re-processor directives.	, , , , , ,
-	ng pointers (int pointers, char pointers) and p	oointer arrays.
e	structures and unions	-
9. Programs on 1	File Processing.	
10. Programs or	Pointers to structures and Self-referential st	ructures
Course Outcomes:	After Completion of this course the student v	would be able to
1. Develop the C code for the given algorithm.		
2. Understand, debug and trace the execution of programs written in C language.		ritten in C language.
Reference Books:		
1. Scheldt H, C:	The Complete Reference, 4th Edition, Tata	McGraw-Hill, 2002.
2. Hanly J R & K Education, 20	Coffman E.B, "Problem Solving and Program 19.	n design in C", Pearson
3. R.G. Dromey,	How to solve it by Computer, Pearson Education	n, 2019.
	rouzan& Richard F. Gilberg, Computer Science: g C, Third Edition, Cengage Learning	A Structured Programming

CE 107	ENVIRONMENTAL SCIENCE (Audit Course / No University Exam)	Credits: 0(Zero)
Sessional Marks: 100	4L:0T:0P	End Examination Marks: NIL
Course Outcomes:		
	students will be able to	
1. Acquire knowled	-	
	omponents of environment and natural reso	
5	n and biodiversity & its conservation metho	ods
	on growth and human health	
• green tec		
•	lve the issues related to sources of different	•• •
	s to individuals, industries and government	for sustainable development of
natural resources		
4. Apply environm	ental ethics in protection of diversified ecos	systems.
	UNIT I	
Environmental Stu	dies and Natural Resources	
Definition, Scope a	nd importance of Environment, Environm	nental studies, Need for public
awareness		
-	vironment- Atmosphere, Hydrosphere, Lith	-
Renewable and Nor	n-Renewable Resources and associated pr	roblems
	se and over utilization of surface and	ground water, floods, drought,
	dam benefits and problems.	
	se and over exploitation, deforestation, c	ase studies. Timber extraction,
-	eir effects on forests and tribal people.	
Land resources: Lan desertification.	d as a resource, land degradation, Man ind	uced landslides, soil erosion and
Mineral resources: mineral resources, ca	Use and overexploitation, Environmental ase studies.	effects of extracting and using
	rld food problems, changes caused agricul	ture and overgrazing, effects of
modern agriculture,	fertilizer – pesticide problems, water loggir	ng, salinity, Case studies.
-	rowing energy needs, renewable and non r	
alternate energy sour	alternate energy sources. Case studies.	
Role of an individua	l in conservation of natural resources.	
	UNIT II	
Ecosystem and Bio	diversity	
Ecosystem - Conce	pt of an ecosystem, Structure and functio	ns of an ecosystem, Producers,
consumers and dec	omposers, Energy flow in the ecosysten	n, Ecological succession, Food
chains, food webs an	nd ecological pyramids.	
• -	characteristic features, structure and functio . (b) Grassland ecosystem	on of the following ecosystem.
•	n. (d) Aquatic ecosystem (ponds, streams, la	ikes, rivers, oceans, estuaries)
(-) = ==================================	(,1	, , , , , , , , , , , , , , , , , ,

Biodiversity and its conservation:

Definition, genetic species and ecosystem diversity, Biogeographically classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation. Hot-spots of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, man – wildlife conflicts, Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

UNIT – III

Environmental pollution and Global Effects

Definition, Causes, Effects, and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

Solid waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

Pollution case studies.

Disaster management: Floods, earthquakes, cyclone, landslides, Tsunami. Climate change-Global warming, Acid rain, Ozone depletion.

UNIT – IV

Environment Issues and Management

- Environment and Human health Epidemic diseases, HIV/AIDS, Aviation Flue, Water Borne Diseases.
- Environmental Impact Assessment, Sustainable Development, Clean Production and Clean Development Mechanisms
- Environment Legislation: Environmental Protection Act, Water Act, Air Act, Wild Life Protection Act, Forest Conservation Act, Public Liability & Insurance Act, Issues involved in Enforcement of Environmental legislation.

UNIT – V

Social Issues and the Environment

- Population growth, Population Explosion, Population Control, Women and Child welfare.
- Urbanization, Industrialization, Development projects, Resettlement and Rehabilitation of people Problems concerned, Case studies.
- Consumerism and Waste Products Conservation, Public Awareness, Water Conservation, Rain water harvesting, watershed management, Wasteland reclamation, Human Rights, Value education, Environmental ethics- Issues and possible solution.
- Role of information Technology in Environment and Human Health.

Text Books / Reference Books :

- 1. Anubha Kaushik & C P Kaushik, Environmental studies, New age International Publishers, 2008
- 2. Benny Joseph, Environmental studies, Tata McGraw-Hill Publishers, 2005
- 3. M Chandra Sekhar, Environmental Science, Hi-Tech Publishers, 2004
- 4. Keerthinarayana and Daniel Yesudian, Principles of Environmental Sciences and

Engineering	, Hi-Tech	Publishers,	2005
-------------	-----------	-------------	------

- 5. AmalK.Datta, Introduction to Environmental Science and Engineering, Oxford & IBH Publishing Co.Pvt.Ltd, 2000
- 6. SanthoshkumarGarg,RajeshawriGarg and RajniGarg, Ecological and Environmental studies, Khanna publishers, 2006
- 7. Gilbert M, Introduction to Environmental Engineering and Science, Masters Publication by Prentice –Hall of India Private Ltd., 1991
- 8. William P Cunningham and Mary Ann Cunningham, Principles of Environmental Science, Tata McGraw Hill Publishing Co.Ltd, 2002

II – SEMESTER

MA 201	MATHEMATICS II	Credits: 4
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
Course Outcomes:	At the end of the course, students will be able	to
not 2. Use Cayley 3. Use Eigen v 4. To analyze such as div significant r 5. Use Green' plane	f matrices to decide whether the system of line -Hamilton theorem to find inverses or powers of values and vectors to reduce Quadratic forms to motion problems from real lines to curves and regence and curl of vector and gradient, dire roles in many applications. Is theorem to evaluate line integrals along si	of matrices. o normal form. surfaces in 3-D and use tools ectional derivatives that play mple closed contours on the
	theorem to give a physical interpretation of the vergence theorem to give a physical interpret.	
cosine functi 9. Evaluate cer and Beta fun 10. Study certair	rier Series to represent a function as a series of ons of different frequencies in order to observe tain improper integrals to make them simple w ctions. In special functions that arise in solving certain model many physical phenomena.	e periodic phenomenon. ith introduction of Gamma
	Unit I	
	a matrix-solution of system of linear equati neorem-quadratic forms- diagonalization. Unit II	ons-Eigen values, vectors –
	radient, Divergence, Curl of a vector and rel reen's, Stokes's and Gauss Divergence theorer Unit III	
Fourier Series: Fou cosine series-harmo	rier series-even and odd functions, periodic f nic analysis.	functions-half range sine and
	Unit IV	
Special Functions a ordinary points.	I: Gamma and Beta functions-series solution	ns of differential equations-
	Unit V	
Lengender polynor	II: Bessel function-recurrence formulae-gen nials-recurrence formulae-generating functio lity of Lengender polynomials.	•

Text/Reference Books

- 1. B S Grewal, Higher Engineering Mathematics, 40th Edition, Khanna Publications, 2007.
- 2. M K Venkataraman, Engineering Mathematics, National Publishing Company, Chennai.
- 3. B V Ramana, Higher Engineering Mathematics, 6th Reprint, Tata McGraw-Hill, 2008.
 - 4. Bali and Iyengar, Engineering Mathematics, 6th Edition, Laxmi Publications, 2006.

CY 202	ENGINEERING CHEMISTRY	Credits: 4
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
1. Analyze mic intermolecula	At the end of the course, students will be able proscopic chemistry in terms of atomic r forces. alk properties and processes using thermodyna	and molecular orbital and
3. Distinguish t	he ranges of the electromagnetic spectrum	used for exciting different

- 4. Rationalize periodic properties such as ionization potential, electro negativity, oxidation states and electro negativity.
- 5. List major chemical reactions that are used in the synthesis of molecules.

molecular energy levels in various spectroscopic techniques

UNIT I

Atomic and molecular structure (12 lectures)

Postulates of quantum chemistry. Schrodinger equation. Particle in a box solutions, Molecular orbitals of diatomic molecules and plots of the multicenter orbitals, Equations for atomic and molecular orbitals, Energy level diagrams of diatomics, Pi-molecular orbitals of butadiene and benzene. Band structure of solids and the role of doping on band structures

UNIT II

Spectroscopic techniques and applications

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclearmagnetic resonance and magnetic resonance imaging, surface characterization techniques.

UNIT III

Chemical equilibria, Intermolecular forces and potential energy surfaces

Use of free energy in Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies.Free energy and emf.Cellpotentials, the Nernst equation and applications.

Use of free energy considerations in metallurgy through Ellingham diagram. Equations of state of real gases and critical phenomena.

UNIT IV

Periodic properties

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular

geometries, Born- Haber cycle, The use of reduction potentials, Properties of ionic and covalent compounds.

UNIT V

Stereochemistry, Organic reactions and synthesis of a drug molecule

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings Synthesis of a commonly used drug molecule.

Reference/Textbooks

- 1. University chemistry, by B. H. Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 5. Physical Chemistryby P. W. Atkins
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Ed.
- 7. Principles of physical chemistry, Puri, Sharma and Pattania.

EN 203	ENGLISH	Credits: 2
Sessional Marks: 40	2L:0T:0P	End Examination Marks: 60
Course Outcomes: At the end of the course, students will be able to		
 Learn literary maintain ling pronunciation develop com passages. develop the l 	nents of grammar and composition of En y texts such as Short stories and prose pas guistic competence through training in vo n. munication skills by cultivating the habit anguage skills like listening, speaking, re self-instructed learner friendly modes of	ssages. acabulary, sentence structures and t of reading comprehension eading and writing.
Acquaintance with	UNIT I rd Formation- Root words from foreign l prefixes and suffixes from foreign langu as, and standard abbreviations.	0 0
	UNIT II	
	s – Use of phrases and clauses in s ting coherence – Organizing principle	
	UNIT III	
• •	on Errors in Writing nent -Noun-pronoun agreement -Misplac chés	ed modifiers -Article -Prepositions
	UNIT IV	
Nature and Style o		
•	ng - Classifying –Providing examples	or evidence –Writing introduction
	UNIT V	
Writing Practices Comprehension - Pr	écis Writing –Essay Writing	

Reference/Textbooks:

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper ResourceBook. 2001
- 4. Study Writing. LizHamp- Lyonsand Ben Heasly. Cambridge University Press. 2006.
- 5. Communication Skills. Sanjay KumarandPushpalata. Oxford University Press. 2011.
- 6. Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

EE 204	ELECTRICAL CIRCUITS	Credits: 4
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

Course Outcomes: At the end of the course, students will be able to

- 1. Gain the knowledge on Basic circuit concepts, Mesh & Nodal analysis and network topology concepts.
- 2. Analyze the single phase AC circuits under steady state conditions
- 3. Design and analyze series and parallel resonant circuits
- 4. Draw the Current locus diagrams
- 5. Analyze three phase AC circuits

UNIT I

Basic Circuit Concepts: Electrical circuit elements (R, L and C), Classification of Circuit elements, Voltage and Current sources, Source transformation Techniques– Kirchhoff's laws – Star-delta transformation – Network reduction techniques - Mesh and Nodal Analysis for D.C. Circuits– Concept of mutual inductance – Dot convention.

UNIT II

Network Topology: Graph, tree, incidence matrix, and tie set and cut set matrices – Formulation of equilibrium equations based on graph theory. Duality and dual circuits **A.C. Fundamentals:** Periodic waveforms – Average and effective values of different waveforms - Form factor and crest factor.

UNIT III

A.C. Circuits: Phase and phase difference – Phasor notation – Concept of reactance, impedance, susceptance and admittance – Power factor -Active and reactive power – Impedance Triangle-Power triangle – Steady State analysis of single-phase A.C. circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel) – Phasor diagrams. Mesh and Nodal Analysis for A.C. Circuits.

UNIT IV

Resonance: Series and Parallel Resonance – Resonant frequency, Half power frequencies, bandwidth and Quality Factor.

Locus diagrams: Current locus diagrams of RL and RC series circuits and two branch parallel circuits.

UNIT V

Three Phase Circuits: Advantages of three phase systems – Phase sequence – Balanced and Unbalanced systems – Magnitude and phasor relationships between line and phase voltages and currents in balanced star and delta circuits – Analysis of balanced and unbalanced three phase circuits with star and delta connected loads, Measurement of three phase power – Two wattmeter method.

Text Books:

- 1. Sudhakar and Shyammohan, Circuits and Networks: Analysis and Synthesis, 5th Edition, Tata McGraw-Hill
- 2. Ravish R. Singh, Network Analysis and Synthesis, Tata Mc. Graw Hill.
- 3. Abhijit Chakrabarti: Circuit Theory Analysis and Synthesis, 7th Revised Edition, Dhanpat Rai & Co

ME 205	ENGINEERING GRAPHICS AN DESIGN	ND Credits: 3.5
Sessional Marks: 40	2L:0T:3P	End Examination Marks: 60
 Make a district Draw hyper Draw section Draw project 	At the end of the course, the student w inction between first angle projection a bola, parabola, Involutes and Cycloidal ns of solids including cylinders, cones, ctions of lines, planes, solids and sectio graphic projections of lines, planes, and	nd third angle projection of drawing l curves. prisms and pyramids. ns of solids.
	Unit I	Question Paper Modular – 4 questions from Units I t0 IV, 15 marks each
lettering, Conic sect Epi-cycloid, Hypo- Scales- Scales- con	gineering Drawing neering Graphics and their significan tions including the Rectangular Hyperb cycloid and Involutes. Unit II struction of Plain &Diagonal Scales. nts, lines - Projections of Points and lir	pola (General method only); Cycloid,
traces;	Unit III	
Projections of Reg	es s (Regular surfaces only) inclined Plan gular Solids (Simple solids – cylind Planes-Auxiliary Views	-
Principles of Ortho scale. Principles of Isometric Views of	Unit IV ons& Orthographic projections graphic Projections-Conventions Drav Isometric projection – Isometric Sc lines, Planes, Simple and compound Sc ws and Vice-versa, Conventions.	ale, Isometric Views, Conventions;
	Unit V	
[such as: The Me Dimension, Drawin windows, Shortcut		ect Properties, Draw, Modify and ordinate System), Dialog boxes and Line (where applicable), The Status

Text/Reference Books:

- 1. Bhatt N.D., Panchal V.M. &Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah,M.B.&RanaB.C.(2008),EngineeringDrawingandComputerGraphics,PearsonEduca tion
- 3. Agrawal B. & Agrawal C.M.(2012), Engineering Graphics, TMH Publication
- 4. Narayana, K.L. &P Kannaiah(2008),Text book on Engineering Drawing, Scitech Publishers
- 5. Corresponding set of) CAD Software Theory and User Manuals

EN 206	ENGLISH COMMUNICATION LAB	Credits: 1.5
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Course Outcomes:		
	uire basic proficiency in English including rea	ding and listening
comprehension, writ	ing and speaking skills.	
Listening Comp	ehension -Pronunciation, Intonation, Stre	ss and Rhythm -Common
Everyday Situations: Conversations and Dialogues -Communication at Workplace -		
Interviews -Forma	1 Presentations	
Reference/Text Boo	oks:	
1. Practical E	nglish Usage. Michael Swan. OUP. 1995.	
2. Remedial	English Grammar. F.T. Wood. Macmillan.200)7
3. On Writin	g Well. William Zinsser. Harper Resource Bo	ok. 2001
4. Study Wri	ting. LizHamp– Lyons and Ben Heasly. Camb	oridge Univ. Press. 2006
5. Communio	cation Skills. Sanjay Kumar and Pushpalata. C	Oxford Univ. Press.2011
6 Exercises	in Spoken English. PartsI-III.CIEFL, Hyderab	ad, Oxford Univ. Press

III – SEMESTER

MA301B	MATHEMATICS –III	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Course Outcomes: At the end of the course, students will demonstrate the ability to

- 1. Acquire the knowledge of functions of complex variables.
- 2. understand power series and expansion of analytic function.
- 3. understand Laurent Series, poles, singular points, Residue theorem and its applications.
- 4. analyze the solutions of partial differential equations.
- 5. discuss the boundary value problems, one dimensional wave equation, heat equation and Laplace Equation.

UNIT- I

Complex analysis - I: Analytical functions - Cauchy-Riemann equations - Construction of Analytic functions- Complex integration - Cauchy's theorem - Integral formula - Evaluation of integrals.

UNIT-II

Complex analysis - II: Taylor's and Laurent's' series- Transformations- Conformal mapping - Bilinear transformations - Transformation of 1/z, z^2 , sin z and cos z.

UNIT-III

Complex analysis –III: Singularities - Poles - Residues - Residue theorem – Contour integration-Evaluation of real integrals

UNIT-IV

Partial differential equations - I : Formation of differential equations - Classification - First order linear partial differential equations – Lagrange's' linear equation - Method of multipliers - first order non-linear partial differential equations - Charpits method.

UNIT- V

Partial differential equations - II: Method of separation of variables - One dimensional wave equation - Heat equation - Laplace's equation.

Text Books:

1. Grewal B S, Higher Engineering Mathematics, 40th Edition, Khanna Publications, 2007.

2. Venkataraman M K, Engineering Mathematics, Vol. I & II, National Publishing Company, 1993.

3. Venkataraman M K, Engineering Mathematics, National Publishing Company, 1995.

4. Grewal B S, Engineering Mathematics, 13th Edition, Khanna Publications.

5.Kreyszig E, Advanced Engineering Mathematics, 8th edition, Wiley, 1998.

EE302C	ELECTRO MAGNETIC FIELDS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
Course Outcomes: At	the end of the course, students will demonstrat	te the ability to
1. get acquainted v	vith different coordinate systems and their tran	sformation.
2. learn different c	oncepts in Electrostatic fields.	
3. learn different c	oncepts in magnetic fields	
4. get acquainted v	vith time varying electric and magnetic fields.	
	<u>UNIT-I</u>	
field intensity. Electric flux density and Gauss's law. Gauss's law in point form. Electrostatic potential. Potential gradient. Energy stored in electric field.		
<u>UNIT-II</u> Conductors and Dielectrics: Current and current density. Continuity equation. Conductors – Ohm's law, Resistance, Power dissipation, and Joule's law. Dielectrics – Dipole moment, Polarization, and bound charge densities. Boundary conditions. Capacitance.		
<u>UNIT-III</u>		
Magnetostatic fields: Force of a magnet on a current carrying wire, Biot-Savart law. Lorentz force law. Ampere's circuital law. Ampere's circuital law in point form. Scalar and vector Magnetic potential, Magnetic flux density.		

UNIT-IV

Magnetic field in materials: Magnetic moment, Magnetization, and Bound current densities. Boundary conditions. Inductance. Energy stored in magnetic field.

<u>UNIT-V</u>

Maxwell's equations: Faraday's law – Motional and Transformer induced emfs, Faraday's law in point form. Displacement current. Maxwell's equations in differential and integral forms. Wave equation and its general solution for free space conditions.

<u>Text Books:</u>

- 1. Mathew N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press.
- 2. Edward C. Jordan and Keith G. Balmain, "Electromagnetic Waves and Radiating Systems", Prentice-Hall of India Pvt. Ltd.

R-20 Regulations	SYLLABUS	B. Tech (E.E.E)
EE303C	NETWORK ANALYSIS	4 Credits
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will demonstrate the ability to

1. Apply Network theorems for the analysis of electrical circuits.

- 2. Analyze the time domain behavior of electrical circuits under transient conditions.
- 3. Evaluate the network functions and two-port network parameters.
- 4. Synthesize the one port networks using Foster and Cauer methods.

UNIT-I

Network Theorems: Superposition Theorem– Reciprocity theorem -Thevenin's and Norton's Theorems – Maximum Power Transfer Theorem- Millman's Theorem — Tellegen's Theorem – Compensation Theorem - Application of these Theorems for D.C. circuits and sinusoidal steady state A.C. circuits.

UNIT-II

Transient Analysis: Time domain analysis of RL, RC, and RLC circuits for D.C. and sinusoidal excitations – Determination of initial conditions – Concept of time constant – Transient response of RL, RC, and RLC circuits using Laplace Transform techniques.

<u>UNIT-III</u>

Network Functions: One-port and Two-port networks – Driving point and transfer functions of networks – Properties of driving point and transfer functions – Concept of complex frequency, poles and zeros – Time domain response from pole-zero diagram – Restrictions on pole-zero locations.

UNIT-IV

Two-port Network Parameters: Open circuit impedance and short circuit admittance parameters – Hybrid and inverse-hybrid parameters – Transmission and inverse transmission parameters – Inter relationships between parameter sets – Series, Parallel, and Cascade connection of two-port networks – Conditions for reciprocity and symmetry of two-port networks. Terminated two-port networks – Image parameters.

<u>UNIT-V</u>

Elementary Ideas of Network Synthesis: Positive real functions - Hurwitz polynomials - Properties and realization of RL, RC, and LC immittance functions by Foster and Cauer methods.

Text Books:

- Sudhakar and Shyammohan, Circuits and Networks: Analysis and Synthesis, 5th Edition, Tata McGraw-Hill
- 2. Ravish R. Singh, Network Analysis and Synthesis, Tata Mc. Graw Hill.
- 3. Abhijit Chakrabarti: Circuit Theory Analysis and Synthesis, 7th Revised Edition, Dhanpat Rai & Co
- 4. M. E. Van Valkenburg; "Network analysis"; Pearson Education, Third Revised Edition.

R-20 Regulations	SYLLABUS	B. Tech (E.E.E)
EE304C	D.C. MACHINES AND TRANSFORMERS	4 Credits
Sessional Marks: 40	3L:1T:0P	End Examination Marks:60

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand the concepts of energy conversion principles, constructional details and principle of operation of DC machines and Transformers.
- 2. Analyze the performance of the DC Machines under various operating conditions using their various characteristics and testing methods.
- 3. Analyze the parallel operation of DC machines and transformers and select appropriate machine as per applications.
- 4. Evaluate the performance of Transformers using phasor diagrams, connections, testing methods and equivalent circuits

UNIT-I

Principles of electromechanical energy conversion: Energy in magnetic system, field energy and mechanical force, single and multiply-excited magnetic field systems, forces/torques in systems with permanent magnets, energy conversion via electric field, dynamical equations of electro mechanical systems.

<u>UNIT-II</u>

DC Generators: Construction, armature windings and its types, Emf equation, armature reaction, compensating windings, commutation, characteristics and types of generators. **Parallel operation of DC Generators:** DC shunt and series generators in parallel, equalizing connections

UNIT-III

DC Motors: Force on conductor carrying current, Torque and power equations, speed control, starting and characteristics of dc motors, Losses and efficiency, testing and applications of DC machines.

UNIT-IV

Transformers: Principle, construction and operation, equivalent circuit, phasor diagrams, voltage regulation, losses and efficiency, all day efficiency, Testing of transformers. **Autotransformer:** Construction, principle, applications and comparison with two winding transformers.

<u>UNIT-V</u>

Three-phase transformer: Construction, Cooling, types of connection and their comparative features, Phase conversions - Scott connection, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers, Parallel operation of transformers.

Text Books:

1. I.J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

2. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

References Books:

- 1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
- 2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 3. B. L Theraja, A. K. Theraja, "A text book of Electrical Technology, Vol. II,
 - 4. AC and DC Machines" S. Chand Publication, Multicolor edition, Reprint 2004

B. Tech (E.E.E)

EE305C	ANALOG ELECTRONICS	3 Credits	
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60	
Course Outcomes:	Course Outcomes: At the end of this course, students will demonstrate the ability to		
1. understand the characteristics of various components.			
2. Understand the b	2. Understand the biasing techniques		
3. Design and analy	ze various rectifiers, small signal amplifier circu	iits.	
4. Design sinusoida	l and non-sinusoidal oscillators.		
5. Understand the fi	unctioning of OP-AMP and design OP-AMP bas	ed circuits.	
and full-wave rect CB, CE, CC conf base and common MOSFET CIRCU small signal equiv common-source, frequency equivale MULTI-STAGE amplifiers; Different	UNIT-I TS : P-N junction diode, I-V characteristics of a ifiers, clamping and clipping circuits. Input out igurations, biasing circuits, Load line analysis, collector amplifiers; Small signal equivalent circ UNIT-II UITS: MOSFET structure and I-V characteris alent circuits - gain, input and output impedant common-gate and common-drain amplifiers ant circuit. UNIT-III AND POWER AMPLIFIERS: Direct coupled ntial Amplifiers, Power amplifiers - Class A, Cla UNIT-IV PLIFIERS: Concepts of feedback – Classificate	put characteristics of BJT in , common-emitter, common- uits, tics. MOSFET as a switch. aces, small-signal model and , trans conductance, high and RC Coupled multi-stage ass B, Class C.	
characteristics – V configurations – Si OSCILLATORS:	 General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems. OSCILLATORS: Condition for Oscillations, RC type Oscillators-RC phase shift and Wienbridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and 		
	<u>UNIT-V</u>		
input offset curren	AMPLIFIERS: Ideal op-amp, Output offset t, slew rate, gain bandwidth product, Inverting grator, Square-wave and triangular wave generat	and non-inverting amplifier,	
	rronics, Jacob Millman, Christos C Halkias, N	AcGraw Hill Education. 2 nd	
edition 2010			
1 1	ear ICs – Ramakanth A. Gayakwad, PHI, 2003		
References:	ces Conventional and current version -Thomas L	Floyd 2015 nearson	
	A. Grabel, "Microelectronics", McGraw Hill Edu		
	W. Hill, "The Art of Electronics", Cambridge U		
	6. Meyer and S. Lewis, "Analysis and Design of	•	

EE306L	ELECTRICAL CIRCUITS AND NETWORKS LAB	1.5 Credits	
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60	
	Course Outcomes : At the end of this course, students will demonstrate the ability to		
-	1. Verify Network theorems for the analysis of electrical circuits.		
 Analyze the time domain behavior of electrical circuits under transient conditions. Draw the locus diagrams and analyze the resonance conditions. 			
4. Evaluate the two-port network parameters.			
Experiments related to the course contents of two courses (1) Electrical Circuits (2) Network Analysis.			

EE307L	D.C. MACHINES AND TRANSFORMERS LAB	1.5 Credits
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to 1. Test the performance of any DC machines and single-phase transformers, by conducting suitable experiments and report the results. 2. Analyze the various speed control methods of DC motors and characteristics of DC machines. 3. Understand the significance of different connections of three-phase transformers. 		
Experiments related to the course contents of the course D.C. Machines and Transformers.		

EE309S	COMPUTER SKILLS	2 Credits
Sessional Marks: 40	1L:0T:2P	End Examination Marks: 60
 Identify basic Select and use word Processin Identify basic folders for diff Identify basic 	t the end of this course, students will demonst terms, concepts, and functions of computer sy the appropriate software application to comp ng skill to create, save, modify business docum concepts and procedures for creating, view ferent operating systems. concepts of organization and procedures f ntation such as PowerPoint.	stem components. blete a particular task such as a nents. ving, and managing files, and
	the following topics: Computer Software.	
 Documentation Mathematical C Presentation usi Brief study of in Brief Study of v 	Calculations using Spreadsheet.	

MC310A	CONSTITUTION OF INDIA (Audit Course / No University Exam)	0 Credits	
Sessional Marks: 100	2L:0T:0P	End Examination Marks: NIL	
Course Outcomes: A 1. Understand th rights perspec 2. address the constitutional emergence of 3. address the r Revolution in History of Making of t Working) Philosophy of the India	t the end of this course, students will dem the premises informing the twin themes of stive. growth of Indian opinion regarding role and entitlement to civil and ec inationhood in the early years of Indian na- role of socialism in India after the co- 1917 and its impact on the initial drafting <u>UNIT-I</u> the Indian Constitution: History. Drafti an Constitution: Preamble Salient Feature <u>UNIT-II</u> Institutional Rights & Duties: thts in of Religion cational Rights	nonstrate the ability to liberty and freedom from a civil modern Indian intellectuals' onomic rights as well as the ationalism. mmencement of the Bolshevik g of the Indian Constitution.	
Directive PrincipFundamental Dut	les of State Policy ties.		
	<u>UNIT-III</u>		
 Organs of Gove Parliament Composition Qualifications an Powers and Funct Executive President Governor 	d Disqualifications		

SYLLABUS

- Council of Ministers
- Judiciary, Appointment and Transfer of Judges, Qualifications
- Powers and Functions

UNIT-IV

- Local Administration:
- District's Administration head: Role and Importance,
- Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
- Pachayati raj: Introduction, PRI: Zila Pachayat.
- Elected officials and their roles, CEO Zila Pachayat: Position and role.
- Block level: Organizational Hierarchy (Different departments),
- Village level: Role of Elected and Appointed officials,
- Importance of grass root democracy

<u>UNIT-V</u>

- Election Commission:
- Election Commission: Role and Functioning.
- Chief Election Commissioner and Election Commissioners.
- State Election Commission: Role and Functioning.
- Institute and Bodies for the welfare of SC/ST/OBC and women.

Text Books/References:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

SYLLABUS IV - SEMESTER

EE401C	POWER SYSTEMS-I	4 Credits
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will be able to

1. Understand the power system structure and principles of energy generation from conventional and renewable energy sources

2. Analyze the economic aspects of power generation.

3. Acquire the knowledge on parameter calculations and mechanical design in transmission lines.

<u>UNIT-I</u>

Fundamentals of Power systems: Evolution of Power Systems- Present Day Scenario-Structure of a power system-Conventional and Renewable Energy Sources.

Power Stations: Hydro-electric, Thermal Stations, Gas Turbine and Nuclear power Stations-Selection of site, Main parts, lay out and working principle.

UNIT-II

Renewable Energy sources: Necessity- principle of operation and working of Solar electric system, wind electric system, bio-mass and bio-gas plants, Fuel cells, Tidal and Geothermal power plants - applications.

<u>UNIT–III</u>

Economic aspects of power stations: Types of loads-Load curve, load duration and integrated load duration curves-Load factor-Demand factor-Diversity factor-Capacity factor-Utilization and plant use factors-The effect of these factors on generation-Number and size of generating units-Base load and peak load plants-Costs of electrical energy-Types of tariff charges on consumers.

<u>UNIT-IV</u>

Inductance and capacitance calculations of transmission lines: Line Conductors-Resistance-Inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacings-Composite conductors-transposition-Bundled Conductors-Effect of earth on capacitance.

UNIT-V

Mechanical design of Transmission line: Catenary Curve-Sag tension calculations- Supports at equal and different levels, effect of wind and ice loading – stringing chart – sag template – conductor vibrations.

Corona: Introduction- critical disruptive voltages-Corona loss-factors affecting corona loss-Methods of reducing corona loss-Disadvantages of corona-Inductive interference between power and communication lines.

Text Books:

- 1. C..L.Wadhwa, "Generation Distribution and utilization of Electrical energy", New Age International
- 2. Power plant Engineering by A.K.Raja etc, New age International Publishers.
- 3. G. D. Rai, 'Non-Conventional Energy Sources', Khanna Publishers, New Delhi, 2006.
- 4. C.L.Wadhawa, "Electrical Power systems" New age publications.
- 5. B.R.Gupta, "Power system analysis and design" third edition, Wheeler publishing.
- 6. William D.Stevenson "Elements of power system analysis" fourth edition, Mc Grawhill International editions.
- 7. AR Bergen and Vijay Vittal, "Power system analysis", Pearson education, 2001

EE402C	INDUCTION MOTORS AND SYNCHRONOUS MACHINES	4 Credits
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
	on completion of this course, students will b constructional details and principle of achines.	
•	llel operation, speed control and starting of A	AC machines.
3. Analyze the per	rformance of the Induction and Synchrono alent circuits and by testing.	
0 1	te AC machine for any application and appra	ise its significance.
	UNIT-I	
-	on Motors: Construction and principle of optics, phasor diagrams, equivalent circuit, cir	•• • •
	UNIT-II	
of emf in to rotor circ induction generator an Single-phase Induct	ree-phase Induction Motors: Pole changing cuit, V/f control of 3-phase induction motor id its applications. tion Motors: Construction, principle, d lications, starting methods, Universal motor	, Double cage induction motor
	UNIT-III	
synchronous reactance	tors: Construction, principle, emf equation, e, equivalent circuit, Phasor diagram, volta nous impedance method, mmf method, ZPF i	ge regulation, determination o
	UNIT-IV	
	ous Machines: Phasor diagram, determination expressions, power angle characteristics.	on of X_d and X_q from Slip test
operation of alternator	of Synchronous Generators: Conditions r with infinite busbars, effect of change of r unsient and sub- transient reactance.	
	UNIT-V	
current and power fac	e: Principle of operation, methods of starting etor with excitation, Predetermination of V s, Synchronous condenser and power factor	and inverted V curves, Hunting
Text Books:		

SYLLABUS

- **2.** Nagrath, I.J. and Kothari, D.P., 'Electrical Machines', Tata McGraw Hill Education Private Limited Publishing Company Ltd., 4th Edition, 2010.
- **3.** M. G. Say, 'Performance and Design of Alternating Current Machines', CBS Publishers & Distributors Pvt. Ltd., New Delhi, 3rd Edition, 2002

Reference Books:

- 1. A.E. Fitzgerald and C. Kingsley, "Electric Machinery", McGraw Hill Education, 2013.
- 2. A. S. Langsdorf, "Alternating current machines", McGraw Hill Education, 1984.
- 3. P. C. Sen., "Principles of Electric Machines and Power Electronics", 2nd edition, John Wiley and Sons Inc., 1997.

HS403C	MANAGERIAL ECONOMICS AND ACCOUNTANCY	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand Macro Economic environment of the business and its impact on enterprise.
- 2. Identify various cost elements of the product and its effect on decision making.
- 3. Understand the concepts of financial management and smart investment.
- 4. Prepare the Accounting records and interpret the data for Managerial Decisions.

<u>UNIT -I</u>

Introduction to Engineering Economics, Fundamental concepts, Time value of money, Cash flow and Time Diagrams, choosing between alternative investment proposals, Methods of Economic analysis (pay back, ARR, NPV, IRR and B/C ratio), The effect of borrowing on investment, Equity vs Debt Financing, concept of leverage, Income tax leverage.

<u>UNIT -II</u>

Depreciation and methods of calculating depreciation (straight line, sum of the years digit method, Declining balance method, Annuity method, Sinking fund method), National income accounting Methods of estimation, Various concepts of National Income, Significance of National income Estimation and its limitations.

UNIT -III

Inflation: Definition, Process and Theories of inflation and Measure of control. New Economic Policy 1991(Industrial Policy, Trade Policy, Fiscal Policy), Impact on Industry.

<u>UNIT -IV</u>

Accounting Principles, procedure, Double entry system, Journal, ledger, Trial balance, Cashbook, preparation of Trading and Profit and Loss account, Balance sheet.

<u>UNIT -V</u>

Cost Accounting: Introduction, Classification of costs, Methods of costing, Techniques of costing, Cost sheet and preparation of cost sheet, Break-even Analysis, Meaning and its application, Limitation.

Text Books:

- 1. Henry Malcom Steiner, Engineering Economics Principles, 2nd Edition, McGraw Hill Education, 1996.
- 2. Dewett. K.K., Modern Economic Theory, Sultan Chand and Co., 2006.
- 3. A.N. Agarwal, Indian Economy, Wiley Eastern Limited, New Delhi.
- 4. Jain and Narang, Accounting Part-I, Kalyani Publishers, 2011.
- 5. Arora, M.N. Cost Accounting: Principles and Practice, 12th Edition, Vikas Publication, 2012.

EE404C	DIGITAL ELECTRONICS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand working of logic families and logic gates.
- 2. Design and implement Combinational and Sequential logic circuits.
- 3. Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- 4. Be able to use PLDs to implement the given logical problem.

UNIT-I

Fundamentals of Digital Systems and logic families: Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic.

UNIT-II

Combinational Digital Circuits: Standard representation for logic functions, K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization.

UNIT-III

Sequential circuits and systems: A 1-bit memory, the circuit properties of Bi stable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential counters, applications of counters.

UNIT-IV

A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, duals lope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs

UNIT-V

Semiconductor memories and Programmable logic devices: Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory (RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).

Text Books:

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

EE405C	SIGNALS AND SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
	the end of this course, students will demons ween various types of signals and understand	
2. Understand and a	classify systems based on the impulse respon and discrete-time systems	se behaviour of both
distribution as a	transformation from time to frequency and u function of frequency	
power spectral de	nvolution for analysing the LTI systems and ensity through correlation.	
5. Solve differentia transforms.	l and difference equations with initial conditi	ons using Laplace and Z-
	UNIT-I Is and Systems: Definition and classification	
Systems, Basic System Convolution Sum, Co Described by Different Signal Analysis: An approximation using	Elementary signals, Classification of Contir n Properties, Linear Time-Invariant Systems ontinuous-Time LTI Systems Convolution cial and Difference Equations. alogy between vectors and signals, Orth orthogonal functions, Mean square error, Drthogonality in complex functions.	- Discrete-Time LTI Systems, Integral. Causal LTI Systems nogonal signal space, Signal
Periodic Signals, Di Trigonometric Fourier spectrum. Deriving Fourier Tran Transform of Periodic Magnitude-Phase respo	UNIT-II Fourier Transform: Fourier series Repres richlet's conditions, Properties of Cont Series and Exponential Fourier Series wit sform from Fourier series, Fourier Transfor Signals, Properties of Continuous-Time Four onses, Parseval's theorem, Inverse Fourier tra r Transform – Properties, Inverse Disc Transform.	inuous-Time Fourier Series. h examples, Complex Fourier m of standard signals, Fourier rier Transform, ansform.
between signals, Cros	UNIT-III orrelation: Continuous-time convolution, (s correlation, Autocorrelation, Properties, E on between convolution and correlation.	
bandwidth, system ba Wiener criterion for ph	UNIT-IV us time LTI systems: Distortion less transm ndwidth, Ideal LPF, HPF and BPF charac sysical realization, relationship between band Theorem, Reconstruction of a Signal from its	cteristics, Causality and Poly- width and rise time.

SYLLABUS

B. Tech (E.E.E)

types of sampling-natural sampling, flat- top sampling and impulse sampling, Effect of under sampling -Aliasing.

UNIT-V

System Analysis using Laplace and z -Transforms:

Laplace Transform - Region of Convergence – Relation between Laplace and Fourier Transform, Inverse Laplace Transform, Properties, Analysis and Characterization of LTI Systems Using Laplace Transform, Z-Transform -Region of Convergence - Properties, Inverse z-Transform, Analysis and Characterization of LTI Systems Using z-Transforms.

Text Books:

- 1. Anand Kumar, Signals & Systems, PHI, 2011.
- Alan V. Oppenheim, Alan S. Willsky, & S. Hamid Nawab, "Signals and Systems," Pearson Higher Education, 2nd Ed., 1997.
- 3. Simon Haykin and B. Van Veen, "Signals & Systems," John Wiley and Sons, 2nd Edition, 2007.

Reference Books:

- 1. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.
- 2. B.P. Lathi, "Principles of LINEAR SYSTEMS and SIGNALS," Oxford Univ. Press, Second Edition, International version, 2009.
- 3. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 4. Luis F. Chaparro, "Signals and Systems using MATLAB," Academic Press, 2011.
- 5. C. L. Philips, J. M. Parr and Eve A. Riskin, "Signals, Systems and Transforms," Pearson Education, 4th Edition, 2008.

SYLLABUS

B. Tech (E.E.E)

EE406L INDUCTION MOTORS AND SYNCHRONOUS MACHINES LAB		1.5 Credits
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to Test the performance of induction motors and synchronous machines by conducting suitable experiments and report the results. Analyze the speed control methods of three-phase induction motors by conducting suitable experiments. Understand the parallel operation and estimate the regulation of alternators. 		
Experiments related to the course contents of the course - Induction & Synchronous Machines.		

EE407LANALOG AND DIGITAL ELECTRONICS LAB1		1.5 Credits
Sessional Marks: 40	0L:0T:3P End Examination Marks	
 Course Outcomes: At the end of this course, students will demonstrate the ability to 1. Plot the characteristics of Electronic Devices to understand the behavior 2. Design, construct and test amplifier circuits and interpret results 3. Design and analyze combinational logic circuits 4. Design and analyze flip flops and Sequential logic circuits 		
Experiments related to the course contents of two courses (1) Analog Electronics (2) Digital Electronics.		

SYLLABUS

B. Tech (E.E.E)

EE409SPYTHON PROGRAMMING2 G		2 Credits
Sessional Marks: 40 1L:0T:2P End Examination Ma		End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to Implement python programming constructs to build small to large applications. Implement the problems in terms of real-world objects. Evaluate and handle the errors during runtime involved in a program. Extract and import packages for developing different solutions for real time problems 		
 Experiments related to the Python Programming Course: Python Programming Fundamentals Python Built-in Data Structures Classes & Objects Functions, I/O, Exception Handling in Python Applications 		

SYLLABUS <u>V – SEMESTER</u>

 Pre-Requisites: Power systems-1, Network Analysis Course Outcomes: At the end of this course, students will demonstrate the ability to 1. Analyze the performance of different transmission lines and different voltage control methods 2. Understand the concepts of substations and overhead line insulators 3. Study and Evaluate power system transients 4. Understand the concepts of Underground Cables 5. Analyze and understand the concepts of Distribution systems UNIT-I Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - BkrArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-III Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	EE501C	EE501C POWER SYSTEMS-II 3 Credit			
 Course Outcomes: At the end of this course, students will demonstrate the ability to Analyze the performance of different transmission lines and different voltage control methods Understand the concepts of substations and overhead line insulators Study and Evaluate power system transients Understand the concepts of Underground Cables Analyze and understand the concepts of Distribution systems Understand the concepts of Underground Cables Analyze and understand the concepts of Distribution systems Unitr-I Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - BkrArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-III Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60		
 Analyze the performance of different transmission lines and different voltage control methods Understand the concepts of substations and overhead line insulators Study and Evaluate power system transients Understand the concepts of Underground Cables Analyze and understand the concepts of Distribution systems Understand the concepts of Underground Cables Analyze and understand the concepts of Distribution systems Understand the concepts of Underground Cables Analyze and understand the concepts of Distribution systems UNIT-I Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-III Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - A	Pre-Requisites: Pow	ver systems-1, Network Analysis			
 methods 2. Understand the concepts of substations and overhead line insulators 3. Study and Evaluate power system transients 4. Understand the concepts of Underground Cables 5. Analyze and understand the concepts of Distribution systems UNIT-1 Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-11 Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-11 Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	Course Outcomes:	At the end of this course, students will demon	strate the ability to		
 3. Study and Evaluate power system transients 4. Understand the concepts of Underground Cables 5. Analyze and understand the concepts of Distribution systems UNIT-I Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - B#rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-II Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 		ormance of different transmission lines and	l different voltage control		
 4. Understand the concepts of Underground Cables 5. Analyze and understand the concepts of Distribution systems UNIT-1 Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-11 Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-11 Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit Travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	2. Understand the co	oncepts of substations and overhead line insula	ators		
 5. Analyze and understand the concepts of Distribution systems UNIT-I Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-III Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	3. Study and Evalua	te power system transients			
UNIT-1 Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-11 Substations: Number and size - Location and installation - The main equipment in substations - Bibr Arrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-11 Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds.	4. Understand the co	oncepts of Underground Cables			
 Performance of transmission lines: Representation of lines - short transmission lines - medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). <u>UNIT-II</u> Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. <u>UNIT-III</u> Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	5. Analyze and unde	erstand the concepts of Distribution systems			
 medium transmission lines - Nominal pie and T representation of long lines by distributed parameters - Equivalent T and Pie representation of long transmission lines - Evaluation of ABCD parameters of long lines - Ferranti effect. Voltage Control using Shunt and series capacitors - synchronous capacitors - Tap changing andBooster Transformers - Surge Impedance Loading (SIL). UNIT-II Substations: Number and size - Location and installation - The main equipment in substations - B&rArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. UNIT-III Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 		<u>UNIT-I</u>			
 Substations: Number and size - Location and installation - The main equipment in substations - BarArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. <u>UNIT-III</u> Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 	parameters - Equiva ABCD parameters o Voltage Control usi	lent T and Pie representation of long transmi f long lines - Ferranti effect. ing Shunt and series capacitors - synchronous	ssion lines - Evaluation of		
 substations - BhrArrangements - Key diagram of a typical primary substation. Overhead line insulators: Introduction - Types of insulators - Potential distribution over string of insulators - Methods of equalizing the potential, string efficiency - Testing insulators. <u>UNIT-III</u> Power system transients: Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds. 		<u>UNIT-II</u>			
Power system transients : Introduction - Circuit closing transients - Sudden symmetrical short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds.	substations - BkbrArr Overhead line insul string of insulators	rangements - Key diagram of a typical primary lators: Introduction - Types of insulators - F	v substation. Potential distribution over a		
short circuit analysis of alternator - Recovery transient due to removal of a short circuit - Travelling waves on transmission line - Surge impedance and wave velocity - Specification of travelling waves - Reflections and refractions of waves - Different types of terminations - Forked line - Successive reflections - Bewley's Lattice Diagram - Attenuation and Distortion - Arcing grounds.		<u>UNIT–III</u>			
	short circuit analysis Travelling waves on of travelling waves - Forked line - Succ	s of alternator - Recovery transient due to re transmission line - Surge impedance and wa Reflections and refractions of waves - Differ cessive reflections - Bewley's Lattice Dia	emoval of a short circuit - ve velocity - Specification ent types of terminations -		
INTT IV		<u>UNIT-IV</u>			

Underground Cables: Introduction - The insulation types - Insulating materials for EHV voltage cables - Classification of cables - Parameters of single core cable - Grading of cables -Capacitance of three core belted cable break down of cables - Heating of cables - dielectric loss and Sheath losses - Current rating of cables

UNIT-V

AC Distribution: Comparison of AC single phase, 3 phase 3 wire and 3 phase 4 wire systems with DC 2 wire - Types of primary distribution systems - Types of secondary Distribution systems - AC distributors fed at one end and at both ends-Kelvin's law - Limitations of Kelvin's law - Load estimation - Selection voltage of primary distribution - Choice of scheme - Size of feeders, power factor correcting methods

Text Books:

- 1. C..L.Wadhwa, "Electrical Power systems" New age publications.
- 2. B.R.Gupta, "Power system analysis and design" third edition, Wheeler publishing.
- 3. William D.Stevenson "Elements of power system analysis" fourth edition, Mc Grawhill International editions.

Reference Books

- 1. C.L.Wadhwa, "Generation Distribution and utilization of Electrical energy" New Age International
- 2. AR Bergen and Vijay Vittal, "Power system analysis", Pearson education, 2001

EE502C	LINEAR CONTROL SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
Pre-Requisites: Engi	neering Mathematics, Network Analysis	·
Course Outcomes: A	At the end of this course, students will demon	strate the ability to
	the modeling of linear-time-invariant systems tate-space representations.	stems using transfer
	e concept of stability and its assessment for l	inear-time invariant systems.
3. Understand th	e applications of control systems in industrie	S.
	UNIT–I	
technologies – Types and disadvantages o	em representation – Classification of sy of control Systems: open loop and closed l f control systems – Examples of open loo inction and limitations	oop systems - Advantages
	<u>UNIT-II</u>	
functions of electrical		ns – Electrical analogues –
	<u>UNIT-III</u>	
•	sis: Standard test input signals – step responstion specifications – steady state error – stroblems.	
	<u>UNIT-IV</u>	
Necessary conditions	systems: Introduction – Bounded Input – for stability – Characteristic equation and I Hurwitz criterion – Root locus techniques -	ocation of roots in s-plane
	<u>UNIT-V</u>	
between time domain	analysis: Introduction to frequency domain s and frequency domain responses – Freque – Relative stability using Nyquist criterion –	ncy response plots – polar

Text Books:

- 1. I.J. Nagrath and M. Gopal, "Control system Engineering", Wiley Eastern Ltd.
- 2. Benjamin C. Kuo, "Automatic Control system", Prentice Hall, 1995.
- 3. Ch. Chengaiah and G.V Marutheswar, "Control Systems A comprehensive Lab Manual", B.S Publications, 2017.

ЕЕ503С	POWER ELECTRONICS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Pre Requisites: Analog Electronics

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand the differences between signal level and power level devices.
- 2. Analyze controlled rectifier circuits.
- 3. Analyze the operation of DC-DC choppers.
- 4. Analyze the operation of Inverters and Cyclo-Converters.

UNIT-I

Silicon controlled Rectifier – Static characteristics and ratings – turn-ON and turn-OFF mechanism – Gate characteristics – Series and parallel operation of SCR's static and dynamic equalization circuits – Protection circuits – Design of snubber circuit – Class A,B,C,D,E types of commutation circuits.

UNIT-II

Phase controlled Rectifiers - Principles of phase control – Half-wave and full- wave controlled rectifiers with resistive, inductive and RLC load – Freewheeling diode operation – Bridge rectifiers – Single phase and three phase Rectifiers with inductive load – Half and fully controlled rectifiers – freewheeling diode operation – Effect of source inductance – Dual converter – circulation and non-circulating current mode of operation.

UNIT-III

Choppers – D.C.Choppers – Principles of operation – control strategies, constant and variable frequency system, current limit control – Types of chopper circuits – Type-A, Type B and TypeE chopper circuits Morgan chopper Jone's chopper

<u>UNIT-IV</u>

Inverters – Classification – series and parallel inverters improved series inverters – Bridge inverters – Commutation circuits – current and voltage commutation circuits – single phase and three phase inverters – output waveform control – Mc Murray Inverter – Introduction to PWM techniques

<u>UNIT-V</u>

Cyclo-converters – Principle of operation – single phase step-up and step down cycloconverters – Three-phase half-wave cycloconverters – output voltage equation – circulation and non-circulating current mode of operation – Load commutated cycloconverter. Speed control – Speed control of DC motors using controlled rectifiers and choppers – Speedcontrol of induction motors using inverters

R-20 Regu	llations	SYLLABUS	B. Tech (E.E.E)
Text E	Books:		
1.	An introduction to Thyris West press.	tors and their application	n – Dr. M. Ramamoorthy – East
2.	Power Electronics - Dr. P.S.	S. Bimbhra 2nd edition –	Khanna publishers.
3.	Power Electronics – M.D. Hill publishers.	. SINGH and K.B. KHA	NCHANDANI – Tata Mc.Graw
4.	Industrial and Power Elect	ronics – RASHID (3rd Ed	dition)

EE504C.i	WIND AND SOLAR ENERGY SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
Pre-Requisites: Power s	ystems-I, Induction Motors and Synchronous	Machines
Course Outcomes: At th	e end of this course, students will demonstra	te the ability to
1. Understand th turbines.	he solar radiation, measurements, characteris	stics of solar PV cell and wind
	nodels of PV system and wind turbine, and the	heir annlications
-	electrical characteristics and operation of	
Ũ	arious power electronic converters used for h	whrid system
4. Onderstand v	UNIT-I	
Basic characteristics	of sunlight – solar spectrum – insolation	specifics_ irradiance and
	eter – solar energy statics- Solar PV cell –	-
	actor-Modeling of solar cell– maximum pow	
	noor monoming of some continuum both	er point tracing.
	UNIT-II	
	ng diode and bypass diodes– composite chara tem –PV-powered fan–PV fan with batt	
• •	v powered lighting systems–grid- connected I	• • •
	UNIT-III	
Wind source-wind	statistics-energy in the wind -turbine	power characteristics -
aerodynamics – roto monitoring system.	r types – parts of wind turbines– braking sy	stems-tower- control and
	UNIT-IV	
	ics of induction generators– grid-connected ivalent circuit-performance predetermina tateperformance.	-
	UNIT-V	
	converters for interfacing wind electric s-wind-diesel systems – wind-solar systems.	generators – power quality

Text Books:

- 1. S N Bhadra, S Banerjee and D Kastha, 'Wind Electrical Systems', Oxford University Press, 1stEdition, 2005.
- 2. Chetan Singh Solanki, 'Solar Photovoltaics: Fundamentals, Technologies and Applications' PHILearning Publications, 2nd Edition, 2011.

Reference Books:

- 1. Roger A. Messenger and Jerry Ventre, 'Photovoltaic Systems Engineering', Taylor and FrancisGroup Publications, 2nd Edition, 2003.
- 2. M. Godoy Simoes and Felix A. Farret, 'Alternative Energy Systems: Design and Analysis withInduction Generators', CRC Press, 2nd Edition, 2008
- 3. Ion Boldea, 'The Electric Generators Handbook- Variable Speed Generators', CRC Press, 2010.
- 4. Bin Wu, Yongqiang Lang, Navid Zargari, Samir Kouro, 'Power Conversion and Control of Wind Energy Systems', IEEE Press Series on Power Engineering, John Wiley & Sons, 2011.
- 5. S. Sumathi,L. Ashok Kumar,P. Surekha ,'Solar PV and Wind Energy ConversionSystems', Springer 2015

EE504C.ii	ELECTRICAL DISTRIBUTION SYSTEM	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Pre-Requisites: Power systems-1

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand the basics of Distribution systems
- 2. Understand different Distribution Transformers & feeders
- 3. Understand the basics of Substations
- 4. Understand the working of Protective devices and coordination
- 5. Acquire the knowledge of power factor and voltage control

UNIT-I

Introduction to distribution systems: An overview of the role of computers in distribution system planning. Load modeling and characteristics. Coincidence factor, contribution factor and loss factor. Classification of loads (Residential, Commercial, Agricultural and Industrial) and their characteristics.

UNIT-II

Distribution Transformers & feeders – Distribution transformer types, regulation and efficiency.Design considerations of distribution feeders – Radial and loop types of primary feeders, voltage levels, feeder loading; basic design practice of the secondary distribution system.

UNIT-III

Substations – Introduction – types of substations - main equipments in substations -Busbar Arrangements- Key diagram of a typical primary substation - Rating of a distribution substation, service area within primary feeders. Benefits derived through optimal location of substations.

UNIT-IV

Protective devices and coordination – Objectives of distribution system protection, Types of common faults and procedure for fault calculations. Protective Devices: Principle of operation of fuses, circuit reclosures, line Sectionalizers, and circuit breakers. Coordination of protective devices General coordination procedure.

UNIT-V

Power factor improvement and voltage control – Capacitive compensation for powerfactor control – Different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (Fixed and Switched), power factor correction, capacitor allocation.

Voltage control – Equipment for voltage control, effect of series capacitors, effect of AVB/AVR,line drop compensation.

- 1. "Electric power Distribution system Engineering "– by Turan Gonen, Mc Graw-Hillbook company.
- 2. V. Kamaraju, Electrical Power Distribution Systems, Tata Mc Graw Hill PublishingCompany, 2nd edition, 2010.
- 3. Electric Power Distribution by A.S. Pabla, Tata McGraw-hill Publishing company, 4thedition, 1997.

EE504C.iii	ELECTRICAL SAFETY	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Pre Requisites: Power Systems-1

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand the need of electrical safety in different locations
- 2. Understand the need of electrical safety during installation of equipment's
- 3. Describe the electrical safety in residential, commercial and agricultural installations.
- 4. Explain the necessity of electrical safety in Hazardous zones
- 5. Understand electrical safety in distributed systems and usage of Fire extinguishers

UNIT-I

INTRODUCTION TO ELECTRICAL SAFETY, SHOCKS AND THEIR PREVENTION:

Terms and definitions, objectives of safety and security measures, Hazards associated with electric current, and voltage, who is exposed, principles of electrical safety, Approaches to prevent Accidents, scope of subject electrical safety. Primary and secondary electrical shocks, possibilities of getting electrical shock and its severity, medical analysis of electric shocks and itseffects, shocks due to flash/ Spark over's, prevention of shocks, safety precautions against contact shocks, flash shocks, burns, residential buildings and shops.

UNIT-II

SAFETY DURING INSTALLATION OF PLANT AND EQUIPMENT: Introduction,

preliminary preparations, preconditions for start of installation work, during, risks during installation of electrical plant and equipment, safety aspects during installation, field quality and safety during erection, personal protective equipment for erection personnel, installation of a large oil immersed power transformer, installation of outdoor switchyard equipment, safety during installation of electrical rotating machines, drying out and insulation resistance measurement of rotating machines.

<u>UNIT-III</u>

ELECTRICAL SAFETY IN RESIDENTIAL, COMMERCIAL AND AGRICULTURAL INSTALLATIONS: Wiring and fitting – Domestic appliances – water tap giving shock – shock from wet wall – fan firing shock – multi-storied building – Temporary installations – Agricultural pump installation – Do's and Don'ts for safety in the use of domestic electrical appliances

UNIT-IV

ELECTRICAL SAFETY IN HAZARDOUS AREAS: Hazardous zones – class 0,1 and 2 – spark, flashovers and corona discharge and functional requirements –Specifications of electrical plants, equipments for hazardous locations – Classification of equipment enclosure for various hazardous gases and vapours – classification of equipment/enclosure for hazardous locations.

UNIT-V

ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM: Total quality control and management – Importance of high load factor – Disadvantages of low power factor – Causes of low P.F. – power factor improvement – equipment – Importance of P.F. improvement

Fire Extinguishers: Fundamentals of fire-initiation of fires, types; extinguishing techniques, prevention of fire, types of fire extinguishers, fire detection and alarm system; CO2 and Halogen gas schemes; foam schemes.

Text Books:

- 1. Rao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", Khanna Publishers, 1988.
- 2. Pradeep Chaturvedi, "Energy Management Policy, Planning and Utilization", ConceptPublishing Company, 1997.

Reference Books:

- 1. Cooper.W.F, "Electrical safety Engineering", Newnes-Butterworth Company, 1978.
- 2. John Codick, "Electrical safety hand book", McGraw Hill Inc., New Delhi, 2000.
- 3. Nagrath, I.J. and Kothari, D.P., "Power System Engineering", Tata McGraw Hill, 1998.
- 4. Wadhwa, C.L., "Electric Power Systems", New Age International, 2004.

EE506L	CONTROL SYSTEMS LAB	1.5 Credits
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Pre-requisites: Control S	Systems	•
Course Outcomes: At th	e end of the course, the student will be abl	e to:
1. Simulate the	physical control system for stability studie	s
2. Demonstrate	feedback controllers	
3. Develop logi	c gates using PLC	
	LIST OF EXPERIMENTS	
1. Modeling of Phys	ical Systems (Mechanical and Electrical sy	vstems).
	eduction of Linear Systems	
-	alysis of Linear Systems for impulse and s	tep inputs
-	se analysis of Linear Systems	1 1
	tive stability analysis of Linear Systems U	Using (Root Locus, Bode and
Nyquist plot).		
6. Time Response an	nalysis of Second Order System.	
7. Study the effect o	f P, PD, PI, PID controllers on second orde	er systems.
8. Magnitude and pl	8. Magnitude and phase plot of Lag and lead compensators.	
9. Determination of	9. Determination of transfer function and effect of feedback on DC servo motor.	
10. Study of logic ga	tes using PLC	
	Additional Experiments	
1. Design of Lag an	d Lead Compensators for a given system	
2. Stepper motor control using Simulation tools.		
3. Study the effect o	3. Study the effect of P. PD, PI, PID controllers on DC servomotor system using PLC.	

3. Study the effect of P, PD, PI, PID controllers on DC servomotor system using PLC.

EE507L	POWER ELECTRONICS LAB	1.5 Credits
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Pre-requisites: Pov	ver electronics Theory	
Course Outcomes:	At the end of the course, the student will be a	able to :
1. Examine t	he characteristics of Power electronic device	2S
2. Analyze th	ne performance of different power converters	s using trainer kits.
3. Evaluate t	he performance of different power converter	s using simulation tools
LIST OF EXPERIMEN	ITS	
	f a matrix converter. characteristics of SCR and IGBT. ntrolled rectifier and to control the speed of	a DC motor
4. Observe the output waveform of series inverter.		
5. Verify the operation of dual converter.		
6. Observe the output waveforms of 1- Φ parallel inverter at different frequencies.		t frequencies.
7. Study the speed control of $3-\Phi$ induction motor in open- loop and closed loop using sinusoidal PWM techniques.		
8. Study the circuit of 3-	Φ half controlled rectifier.	
9. Verify Jone's choppe	r.	

EE508S		MATLAB Laboratory	2 Credits
Sessional Ma	rks: 40	1L:0T:2P	End Examination Marks: 60
Pre-requ	iisites: Con	nputer Skills	
Course (Dutcomes: A	At the end of the course, the student wil	ll be able to :
1.	Learn the M	MATLAB environment and its program	iming fundamentals
2.	Write prog	grams using commands and functions	
3.	Handle and	d solve problems using MATLAB and t	to draw the plots
4.	Create Sim	nulink model	
LIST OF EX	EXPERIMEN	VTS	
	-	program for matrix operation and vario	
2.	1	a program for finding solutions of line	ar equations and factorial of a
	number.		
	-	a program for geometric progression a	e
	-	program to draw a circle and different t	•••••
	5. To write a program for different types of waveforms with and without switch case.		
	6. To develop a program for integral and differentiation of a polynomial.		
7.	-	a program to find largest & smallest ar	nd ascending & descending order by
0	e	LAB software.	· , · 1 ,
	-	program to find date & calendar, given	
9.	To develop number.	elop a program for displaying multiplication table and factorial of a given	
10	To write a r	program code for taking students and er	mployee details

SYLLABUS

МС509А	UNIVERSAL HUMAN VALUES (Audit Course / No University Exam)	0 Credits
Sessional Marks: 100	2L:0T:0P	End Examination Marks: NIL
Pre-requisites/co	requisites: None.	
COURSE OUTC	OMES: At the end of this of this course, the s	students will be able
1. To become	e more aware of themselves, and their surround	lings (family, society, nature)
-	uish between values and skills, happiness he Self and the Body, Intention and Competer	
3. To Unders	tand the role of a human being in ensuring har	mony in society and nature.
	e sensitive to their commitment towards wh lues, human relationship and human society)	at they have understood
	guish between ethical and unethical practitegy to actualize a harmonious environment v	-
	UNIT I	
Introduction - N	eed, Basic Guidelines, Content and Proces	s for Value Education:
Purpose and moti	vation for the course, Self-Exploration-what	is it? - Its content and
process; 'Natural	Acceptance' and Experiential Validation-	as the process for self-
exploration. Cont	nuous Happiness and Prosperity- A look at b	asic Human Aspirations.
-	ing, Relationship and Physical Facility- the	-
-	ations of everyhuman being with their correc	
	osperity correctly - Acritical appraisal of the	
	e human aspirations: understanding and livin	g in harmony at various
levels.		

UNIT II

Understanding Harmony in The Human Being - Harmony in Myself: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility (Sukh and Suvidha). Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Health.

UNIT III

Understanding Harmony in The Family and Society- Harmony in Human-Human Relationship: Understanding harmony in the Family - the basic unit of human interaction. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual **R-20 Regulations**

happiness (Ubhay-tripti); Trust (Vishwas) and Respect (Samman) as the foundational values of relationship. Understanding the meaning of Trust; Difference between intention and competence.

Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Resolution (Samadhan), Prosperity (Samridhi), fearlessness (**Abhay**) and co-existence as comprehensive Human Goals. Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order (Sarvabhaum Vyawastha) - fromfamily to world family.

UNIT IV

Understanding Harmony in The Nature and Existence - Whole Existence as Coexistence: Understanding the harmony in the Nature. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space. Holistic perception of harmony at all levels of existence.

UNIT V

Implications of The Above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basisfor Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competencein professional ethics: a. Ability to utilize the professional competence for augmenting universalhuman order b. Ability to identify the scope and characteristics of people friendly and eco- friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations.

TEXT BOOKS:

- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, ExcelBooks,New Delhi, 2010.
- 2. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

REFERENCE BOOKS:

- 1. E. F. Schumancher, 1973, Small is Beautiful: a study of economics as if people mattered.Blond & Briggs, Britain.
- 2. A. N. Tripathy, 2003, Human Values, New Age International Publishers.
- 3. Ivan IIIich, 1974, Energy & Equity, The Trinity Press, Worcester, and

HarperCollins, USA

- 4. A Nagraj, 1998 Jeevan Vidya ek Parichay, Divya Path Sansthan, Amarkantak.
- 5. Sussan George, 1976, How the Other Half Dies, Penguin Press, Reprinted 1986, 1991.
- 6. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen(Vaidik) Krishi TantraShodh, Amravati.
- 7. E G Seebauer & Robert L.Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press.
- 8. M Govindrajan, S Natrajan & V. S Senthil kumar, Engineering Ethics (including Humna Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 9. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 10. India Wins Freedom Maulana Abdul Kalam Azad.

Relevant CDs, Movies, Documentaries & Other Literature:

- 1. value Education website, <u>http://www.uptu.ac.in</u>
- 2. Story of Stuff, <u>http://www.storyofstuff.com</u>
- 3. AI Gore, An Inconvenient Truth, Paramount Classics, USA
- 4. Charle Chaplin, Modern Times, United Artists, USA
- 5. IIT Delhi, Modern Technology the Untold Story.

VI - SEMESTER

EE601C	POWER SYSTEM ANALYSIS	4 Credit
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
	: At the end of this course, students will der	monstrate the ability to
2. Apply the l	mmetrical and unsymmetrical faults. oad flow techniques and carry out load flow analyze the transient and steady state stabilit	
	<u>UNIT-I</u>	
capacity ofa bus-T Internal voltages of MVA in terms of J	unit system, Introduction to symmetrical father short circuit currents and the reactance of loaded machines under transient conditioner unit and percentage quantities-Need for selection of circuit breakers.	f synchronous machines- ons-Expressions for fault
	<u>UNIT-II</u>	
components in S components - Seq	orks: Symmetrical Components-phase tar- Delta transformer banks -Power in uence impedances and sequence networks-se ce impedances of transmission lines-Se	terms of symmetrical Sequence impedances of
-	nult Analysis : Fault current calculations for fault and Double line to Ground fault, open	_
	<u>UNIT-III</u>	
admittance matrix- load flow equation PV bus-Accelerati	S: Need for load flow studies in a power s Classification of types of buses in a power s- Gauss-Seidel, iterative method for load fi on factors- Newton Raphson method for lar coordinates- formulation of load flow end flow.	er system-Formulation of low studies-Treatment of load flow solution with
	<u>UNIT-IV</u>	
round rotor and sal transmission system two-machine system diagrams-Derivation	Classification of stability studies-The point pole synchronous machine connected m under steady state and transient state - Point of Power flow equations in terms of ABC on of swing equation, Inertia constant. stead ty and steady state stability limits.	to infinite bus through a ower flow equations of a D constants-Power angle

UNIT-V

Transient stability analysis: General considerations and assumptions-Transient stability and stability limits-Reduction of two finite machine system to one machine system-Solution of swing equation of one machine system by point-by-point method-Digital solution by numerical methods-Equal area criterion-Limitations of equal area criterion- Determination of critical clearing angle. methods for improving power system stability.

Text Books:

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw HillEducation,1994.
- 2. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill

Education, 2003.

3. Hadi Saadat, "Power System Analysis", Tata McGraw-Hill Education, 2nd Edition,2002.

Reference books:

- 1. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.
- 2. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.
- 3. Power System Analysis and design by B.R.Gupta, S.Chand publications.

EE602C	ELECTRICAL AND ELECTRONICS MEASUREMENTS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
<u>Pre Requisites:</u> E	lectrical Circuits	
 Understand the Select appropriate their laboratory 	prrelate the significance of different m	truments. various parameters in
instruments Measu	<u>UNIT–I</u> Errors & classification, Deflecting, control, a rement of voltage & current - permanent m rs, dynamometer type instruments.	101
Measurement of DC potentiometers	<u>UNIT–II</u> potential difference, current, and resistan	ce – DC bridges, A.C &
-	nductance, capacitance, and resistance- A	C bridges.
Instrument trans errors.	<u>UNIT–III</u> formers – Current and Potential Transform	ners, Ratio and phase angle
Measurement of	power – Electrodynamic instruments, Induct	ion instruments.
Measurement of	energy – Single phase and three phase energy	y meters.
Power factor n Digital Voltmeters	<u>UNIT–IV</u> neters, Synchronoscopes, Ratiometers, Freq , Multimeters.	uency meters, Q-meters,
effecttransducers. Signal sources – (<u>UNIT – V</u> Position transducers, Force transducers, Pi Temperature measurement. Dscillators, Function generator & pulse gener PRO, Digital storage and Analog storage C error analysis.	rators.
and Instru	whney, 'A Course in Electrical and mentation', Dhanpat Rai & Co., 9 th Edition oper," Electronic Instrumentation and Meas	a, 2015.
		Page 68 of 124

Prentice Hallof India Publications, 1st Edition, 2009.

3. C.T.Baldwin, "Fundamentals of Electrical Measurements".

Reference Books:

- 1. Deobelin, 'Measurements Systems', Tata McGraw Hill Publications, 2nd Edition, 2010.
- 2. John P.Bently, "Principles of Measurement Systems", 3rd edition.

EE603C	MICRO PROCESSORS AND MICROCONTROLLERS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
Pre-Requisites: D	igital Electronics	
Course Outcomes	: At the end of this course, students will dem	nonstrate the ability to
1. Do assembl	ly language programming.	
2. Do interfac	ing design of peripherals like I/O, A/D, D/A	, timer etc.
3. Understand	the architecture and features of 8051 microc	controller.
set, Addressing m	<u>UNIT-I</u> microprocessors, 8086 microprocessor – 2 odes, Interrupt system. Minimum mode 80 086 system and timings.	
	UNIT-II	
directives for ad	tives , Assembly language programs (80 dition, subtraction, multiplication, divisi nipulation, Programs using look–up table	on etc., sorting and
	<u>UNIT-III</u>	
type schemes, Pr Programmable DM	nemes – Synchronous, Asynchronous, Inter rogrammable interrupt controller (8259) AA controller (8257) and its interfacing, I its interfacing, Programmable Communi- terfacing.	and its interfacing, Programmable Interval
	<u>UNIT-IV</u>	
8255 PPI and its in	ing to 8086 – Interfacing various types of terfacing, ADC and DAC Interfacing, Data light controller, Stepper motor control, ter	acquisition, Waveform
	<u>UNIT-V</u>	
	oller – Architecture, register set, Instruction port operations, Memory and I/O interfaci	_
2. Douglas V	nd K.M. Bhurchandi, "Advanced Microproc 7. Hall, "Microprocessors and interfacin TMH,2 nd edition.	· ·

- Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Pernam International / Thomson Publishers, 2nd Edition, 2005.
- 4. Ajay V. Deshmukh, "Microcontrollers theory applications", Tata McGraw-HillCompany

EE604C	UTILIZATION OF	3 Credit
~	ELECTRICAL POWER 3L:0T:0P	
Sessional Marks: 40	3L:01:0P	End Examination Marks: 6
=	C. Machines and Transformers, Induction	n Motors and Synchronous
Machines		
	: At the end of this course, students will d	-
	idents basic practical knowledge of illun	nination and to get general
	eet lighting, building lighting. udents' knowledge about the various el	lectric heating methods and
their advantage	-	lectric heating methods and
e	nts to learn electrical welding methods an	nd their advantages
	udents basic practical knowledge of ele	-
characteristics	of different mechanical loads.	
5. To provide stu	dents' knowledge about the electric tracti	on & their advantages.
	<u>UNIT–I</u>	
Illumination: Nat	ure of light, definitions, Laws of illum	ination, different types of
lamps, construction	n and working of incandescent lamp, fluo	rescent lamp and discharge
lamps, Illumination	n schemes; indoor and outdoor, Illumina	ation levels. General ideas
. .		
about street lighting	g,building lighting.	
-	g,building lighting.	
about street lighting	<u>UNIT–II</u>	
about street lighting Electric Heating:	<u>UNIT-II</u> Advantages of electrical heating, Hea	-
about street lighting Electric Heating: heating, Induction l	<u>UNIT-II</u> Advantages of electrical heating, Heating, Electric arc heating, construction	and working of arc furnace,
about street lighting Electric Heating: heating, Induction I Dielectric heating,I	<u>UNIT-II</u> Advantages of electrical heating, Hea	and working of arc furnace,
about street lighting Electric Heating: heating, Induction l	<u>UNIT-II</u> Advantages of electrical heating, Heating, Electric arc heating, construction	and working of arc furnace,
about street lighting Electric Heating: heating, Induction I Dielectric heating,I	<u>UNIT-II</u> Advantages of electrical heating, Heating, Electric arc heating, construction	and working of arc furnace,
about street lighting Electric Heating: heating, Induction I Dielectric heating,I heating element.	UNIT-II Advantages of electrical heating, Heating, Electric arc heating, construction Infra-red heating, Microwave heating, des	and working of arc furnace, sign problems of resistance
about street lighting Electric Heating : heating, Induction I Dielectric heating, I heating element. Electric Welding : resistance welding,	UNIT-II Advantages of electrical heating, Heating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of e	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon
about street lighting Electric Heating : heating, Induction I Dielectric heating, I heating element. Electric Welding : resistance welding, arc, metal arc, hyd	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of electrogen arc welding methods and their approximation.	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of
about street lighting Electric Heating : heating, Induction I Dielectric heating, I heating element. Electric Welding : resistance welding, arc, metal arc, hydropolicy	UNIT-II Advantages of electrical heating, Heating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of e	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of
about street lighting Electric Heating : heating, Induction I Dielectric heating, I heating element. Electric Welding : resistance welding, arc, metal arc, hyd	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of electrogen arc welding methods and their approximation.	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of
about street lighting Electric Heating : heating, Induction I Dielectric heating, I heating element. Electric Welding : resistance welding, arc, metal arc, hydropolicy	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of electrogen arc welding methods and their approximation.	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of
about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hydrown using coated electro- circuits.	UNIT-II Advantages of electrical heating, Heating, Electric arc heating, construction infra-red heating, Microwave heating, des UNIT-III Advantages of electric welding, Welding welding equipments used, Principle of electrogen arc welding methods and their ap odes, comparison between AC and DC ar	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of rc welding, welding control
about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hydrown using coated electrown circuits. Electric Drives:	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of e thogen arc welding methods and their ap odes, comparison between AC and DC ar	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of re welding, welding control
about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hydro- using coated electro- circuits. Electric Drives: different mechanic	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Welding welding equipments used, Principle of electronic and their appodes, comparison between AC and DC arc UNIT –IV Introduction, Advantages of electric	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of rc welding, welding control drives, Characteristics of ric drive, types of braking,
about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hydro- using coated electro- circuits. Electric Drives: different mechanic	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of electrogen arc welding methods and their ap odes, comparison between AC and DC arc UNIT –IV Introduction, Advantages of electric al loads, Types of motors used in electric transfer, selection of motors for different	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of rc welding, welding control drives, Characteristics of ric drive, types of braking,
about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hydrony using coated electrony circuits. Electric Drives: different mechanic Methods of power	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, dea UNIT –III Advantages of electric welding, Welding welding equipments used, Principle of electric trogen arc welding methods and their ap odes, comparison between AC and DC arc UNIT –IV Introduction, Advantages of electric al loads, Types of motors used in electric transfer, selection of motors for different UNIT –V	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of re welding, welding control drives, Characteristics of ric drive, types of braking, types of domestic loads.
 about street lighting Electric Heating: heating, Induction I Dielectric heating, I heating element. Electric Welding: resistance welding, arc, metal arc, hyd using coated electro circuits. Electric Drives: different mechanic Methods of power Electric Traction 	UNIT-II Advantages of electrical heating, Heatheating, Electric arc heating, construction Infra-red heating, Microwave heating, des UNIT –III Advantages of electric welding, Weldi welding equipments used, Principle of electrogen arc welding methods and their ap odes, comparison between AC and DC arc UNIT –IV Introduction, Advantages of electric al loads, Types of motors used in electric transfer, selection of motors for different	and working of arc furnace, sign problems of resistance ing methods, Principles of electric arc welding, carbon pplications. Advantages of rc welding, welding control drives, Characteristics of ic drive, types of braking, types of domestic loads.

scheduled speed, types of motors used for electric traction, Starting and braking of traction motors.

- 1. Art and Science of Utilization of Electrical Energy by H Partap, Dhanpat Rai &Sons, Delhi.
- 2. Utilization of Electrical Energy by JB Gupta, Kataria Publications, Ludhiana.
- 3. A.Text Book. of Electrical Power by Dr. SL Uppal, Khanna Publications, Delhi.
- 4. Modern Electric Traction by H Partap, Dhanpat Rai & Sons, Delhi.
- 5. Utilization of Electrical Energy by OS Taylor, Pitman Publications.
- 6. Generation, Distribution and Utilization if Electrical Power by CL Wadhwa, WileyEastern,Ltd., New Delhi

EE605C.i	ADVANCED CONTROL SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

<u>Pre Requisites:</u> Linear Control Systems

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand the need of compensators and controllers for design aspects
- 2. Design controllers to satisfy the desired design specifications using simple controller structures (P, PI, PID, compensators).
- 3. Understand the state space analysis and build system matrix for stability purpose.
- 4. Understand system Controllability and Observability.
 - <u>UNIT- I</u>

Compensators: Introduction to Compensators – Need for compensators – Types of Compensators - Lead, Lag, Lead lag compensators – Transfer function of compensators – Comparison of compensators – Applications of compensators.

<u>UNIT-II</u>

Controllers: Introduction to controllers – Need for controllers – Types of Controllers – Proportional, Integral and Derivative Controllers – Transfer function of controllers - PI, PD, PID Controllers – Design of controllers using frequency domain analysis – Comparison of controllers - Applications of controllers.

UNIT-III

State variable descriptions: Introduction – Comparison of advanced control theory and classical control theory – concepts of state, state variables, state vector, state space representation of physical systems – representation in state variable form, phase variables and canonical variables.

UNIT-IV

Controllability and Observability: Definition of controllability and Observability – Controllability and Observability tests for continuous time systems – Duality Principle of Controllability and Observability – Pole placement by state feedback design – State observers – Full order and reduced order observers

UNIT-V

Time response of linear system: Introduction – Solution of state equations – Homogenous andNon-homogenous – State Transition matrix – Properties of STM – Computation of STM

Non linear systems – Introduction – common physical non linearities – Dead Zone, JumpResonance, Stiction, Friction, Hysteresis etc

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.
- 2. Benjamin C. Kuo, "Automatic Control system", Prentice Hall, 1995.
- 3. A Nagoor Khani, "Advanced Control Theory", CBS Publications, 2020.

EE605C.ii	ENERGY AUDITING AND MANAGEMENT	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Pre-Requisites: D.C. Machines and Transformers, Induction Motors and Synchronous Machines, Power systems-1

Course Outcomes: At the end of this course, students will demonstrate the ability to

- 1. Understand energy audit of industries and management of energy systems
- 2. Analyze the methods of improving efficiency of electric motors, power factor and design a good illumination system
- 3. Evaluate and analyze economic aspects of energy saving equipment

<u>UNIT-I</u>

Energy Management: Principles of energy management, organizing energy management program, initiating, planning, controlling, promoting, monitoring, reporting- Energy manger, Qualities and functions, language, Questionnaire – check list for top management.

UNIT-II

Basic Principles of Energy Audit: Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes- Energy audit of industries- energy saving potential, energy audit of process industry, thermal power station, building energy audit.

UNIT-III

Energy Efficient Motors: Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics – variable speed, variable duty cycle systems, RMS hp- voltage variation-voltage unbalance- over motoring- motor energy audit.

UNIT-IV

Power Factor Improvement, Lighting and Energy Instruments: Power factor – methods of improvement, location of capacitors, pf with nonlinear loads, effect of harmonics on power factor, power factor motor controllers – Good lighting system design and practice, lighting control, lighting energy audit – Energy Instruments- wattmeter, data loggers, thermocouples, pyrometers, lux meters, tongue testers, application of PLC's.

<u>UNIT-V</u>

Economic Aspects and Analysis: Economics Analysis-Depreciation Methods, time value of money, rate of return, present worth method, replacement analysis, life cycle costing analysis-Energy efficient motors- calculation of simple payback method, net present worth method- Power factor correction, lighting – Applications of life cycle costing analysis, return on investment.

Text Books

- 1. "Energy management", W.R. Murphy and G. Mckay Butter worth, Heinemann publications.
- 2. "Energy management", Paul o' Callaghan, Mc-graw Hill Book company-1st edition,1998

References:

- 1. "Energy efficient electric motors", John.C. Andreas, Marcel Dekker Inc Ltd-2nd edition,1995-
- 2. "Energy management hand book", W.C. Turner, John wiley and son
- 3. "Energy management and good lighting practice: fuel efficiency- booklet", 12-EEO

EE605C.iii	SPECIAL MACHINES	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
<u>Pre Requisites:</u> D	.C. Machines and Transformers, Induction N	Iotors and Synchronous
Machines		-
Course Outcomes	: At the end of the course, student will be ab	ble to
1. Understand	field aspects of electrical machines	

- 2. Understand the operation and control of
 - a. Stepper motors
 - b. BLDC motors
 - c. SR motor

UNIT-I

Field aspects of electrical machines: Review of Maxwell's equations and solution of Laplace's and Poisson's equations. Concept of magnetic vector potential. Eddy current braking. Linear motors: Basic principle of operation and types. End effects & transverse edge effects. Field analysis & Propulsion force; equivalent circuit.

UNIT-II

Stepper motors: Construction and operation of Stepper Motors: variable reluctance, permanent magnet, hybrid stepper motors, characteristics of stepper motors. Drive Circuits for Stepper motors: Block diagram of stepper motor controller, logic sequence generator, power drivers, current suppression circuits, and acceleration and deceleration circuits.

UNIT-III

Microprocessor control of stepper motors: microprocessor-based stepper motor controller, PC based stepper motor controller. Micro-stepping Control of Stepper motors: the micro-stepping principle, advantages of micro stepping, design of basic micro-stepping controller. Applications of stepper motor

UNIT-IV

Brushless DC motor: principle of operation of BLDC motor, square wave permanent magnet brushless motor drives, sine wave permanent magnet Brushless DC motor drives, phasor diagram, torque speed characteristics, controllers for BLDC motors, alternating current drives with PM and synchronous reluctance hybrid motors.

UNIT-V

Switched Reluctance Motor Drives: Types of SR motors, principle of operation, static torque production, energy conversion loop, dynamic torque production. Converter Circuits, Control of SR motors: current regulation, commutation, torque speed characteristics, shaft position sensing.

- 1. "V.V.Athani, "Stepper Motors Fundamentals, Applications, and Design", New Age.
- 2. TJE Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives" Clarendon Press,Oxford .

EE607L	MICRO PROCESSORS AND MICROCONTROLLERS LAB	1.5 Credits
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 60
Pre-Requisites: Micro F	Processors and Micro Controllers	
Course Outcomes: At th	ne end of the course, students will be able to:	
1. Demonstrate prog	ram proficiency using the various instructior	ns of the 8086microprocessor.
2. Demonstrate prog	ram proficiency using the various instruction	ns of the 8051microcontroller
3. Design systems for	or different applications by interfacing extern	al devices
LIST OF EXPERIMEN	<u>NTS</u>	
Part-1: 8086 programs		
	to demonstrate data transfer operation	
-	to demonstrate arithmetic operation	
-	to demonstrate logical operation	
	to demonstrate shift operation	
-	to demonstrate string operation	
-	to demonstrate looping operation	
	to demonstrate decision making operations	
PART-2: 8051 PROGR	AMS:	
1. Prograt	m to demonstrate data transfer and arithmetic	e operations
2. Program	m to demonstrate logical and shift operations	5
3. Program	m to demonstrate looping operations	
4. Progra	Programming timer / counter.	
5. Program	Programming Serial communication application.	
6. Program	ms to demonstrate bit-manipulation operation	ns.
PART-3: INTERFACI	NG PROGRAMS (using 8086 & 8051 Kit	s)
1. Interfa	cing ADC	
2. Interfa	cing DAC.	
3. Interfa		
4. Interfa	nterfacing 7-segment display.	
5. Interfa	facing Traffic light controller.	
6. Wavef	orm generation	

EE608L		ELECTRICAL AND ELECTRONICS MEASUREMENTS LAB	1.5 Credits
Sessional M	arks: 40	0L:0T:3P	End Examination Marks: 60
Course Out	comes: At th	al and Electronics Measurements le end of this course, students will demonstra	ate the ability to
	e	validate DC and AC bridges.	
	•	e dynamic response and the calibration of fe	
5.		it various measurement devices, their char	acteristics, their operation and
4	their limita		
		l statistical data analysis.	
5.	Understand	computerized data acquisition.	
Lectures/De	emonstratio	15:	
1.	Concepts re	elating to Measurements: True value, Accura	acy, Precision, Resolution,
	1	eresis, Dead-band, Sensitivity.	
2.	-	leasurements. Basic statistical analysis appli	ed to measurements: Mean.
		eviation, Six-sigma estimation, Cp, Cpk.	,
3.	Sensors and Transducers for physical parameters: temperature, pressure, torque, flo		erature, pressure, torque, flow.
5.	Speed and Position Sensors.		
4	-	l Voltage Measurements. Shunts, Potential I	Dividers Instrument
		ers, Hall Sensors.	niviacity. Instrument
5		-	
	Measurements of R, L and C. Digital Multi-meter, True RMS meters, Clamp-on meters, Meggers.		
	Digital Storage Oscilloscope.		
7.	Digital Sto	lage Osemoscope.	
Experiment	S		
1.	Measurement of a batch of resistors and estimating statistical parameters.		istical parameters.
	2. Measurement of L using a bridge technique as well as LCR meter. Measurement		-
		lge technique as well as LCR meter.	
3.	Measurement of Low Resistance using Kelvin's double bridge.		
	Measurement of High resistance and Insulation resistance using Megger.		
	Usage of DSO for steady state periodic waveforms produced by a function generator.		
	-	f trigger source and trigger level, selection o	
		of measurement and sampling rate.	i time soure and voltage soure.
6		of one-cycle data of a periodic waveform fro	om a DSO and use values to
0.		e RMS values using a C program.	in a 1950 and use values to
7	-	SO to capture transients like a step change in	n R-I-C circuit
	-		
δ.	Current Me	easurement using Shunt, CT, and Hall Sensor	ſ.

EE609S	JAVA PROGRAMMING	2 Credit	
Sessional Marks: 40	1L:0T:2P	End Examination Marks: 6	
Pre Requisites: Basics o	f JAVA		
	a and affeling assume the student will be al	-1- +	
	e end of the course, the student will be al software's for writing Java programming		
print its factoria		g and code to accept an integer and	
	va code for different applications.		
2. Develop the ja	va code for different applications.		
List of Modules			
1. Downloading a	nd installing JDK and JRE. Executing sin	nple java program which prints	
Hello world.			
2. Program to acc	ept an integer and prints its factorial.		
3. Develop a java	3. Develop a java program to create class, which contains data and methods (private and		
public), create	public), create an object to access those members.		
4. Develop a java	4. Develop a java program which demonstrates method over loading.		
 Develop a java this keyword. 	Develop a java program which demonstrates constructor and constructor over loading use this keyword.		
 Develop a java class. 	Develop a java program which creates and Access Static and Non-static members of a class.		
7. Develop the java program to study different methods provided in String and String Bufferent classes.			
	8. Develop a java program that demonstrates single inheritance, use super keyword.		
	9. Develop a java program for abstract class to find areas of different shapes.		
	0. Develop a java program to achieve multiple inheritance using interfaces.		
	11. Develop a java program to create an interface named Vehicle which contains two abstrac		
methods. (Specifications (), Display ()). Provide two classes named Two- wheeler, Four wheeler that is implemented by that interface.			
	. Develop a java program to create a package and accesses it.		
	program that demonstrates try, catch and		
1 5	program that displays a frame with two I	5	
Buttons.			

PROFESSIONAL E ENGINEERII		0 Credit
2L:0T:0P		End Examination Marks: NII
ites: None.		
ethical issues related to eng society. oral issues and problems ed for professional ethics, o	gineering and real	lize the responsibilities and find the solution to those
e to Environment Ethics &	computer ethics:	; know their responsibilities
tue – Respect for others – e – Valuingtime – Coopera racter – Spirituality – Intr ence and stress managemen	Living peacefully tion – Commitm roduction to Yog nt.	y – Caring – Sharing – lent – Empathy – Self-
cs: Senses of Engineering Moral dilemmas – Moral A and Controversy –Models of	g Ethics – Varie utonomy – Kohlbo f professional role	erg's theory – Gilligan's es – Theories about right
UNIT	Ш	
Social Experimentation:	Engineering a	•
<u>UNIT-</u>	IV	
ilities and Rights: Safety t Analysis and Reducing R	and Risk – Ass isk – Respect for of Interest – O	r Authority – Collective Decupational Crime –
	ENGINEERI 2L:0T:0P ites: None. At the end of the course, for thical issues related to engressional issues and problems ed for professional ethics, for ent. re to Environment Ethics & Morals, values and Ethics tue – Respect for others – Te – Valuingtime – Cooperant racter – Spirituality – Intre ence and stress management <u>UNIT</u> cs: Senses of Engineering Moral dilemmas – Moral A and Controversy –Models of t – Customsand Religion – Us <u>UNIT</u> Social Experimentation: nsible Experimenters – Cooperant it Analysis and Reducing R fidentiality – Conflicts of	ENGINEERING 2L:0T:0P ites: None. At the end of the course, the student shoul ethical issues related to engineering and rea- society. toral issues and problems in engineering; ed for professional ethics, codes of ethics a ent. re to Environment Ethics & computer ethics UNIT I Morals, values and Ethics – Integrity – f tue – Respect for others – Living peacefully = Valuingtime – Cooperation – Commitmer racter – Spirituality – Introduction to Yo ence and stress management. UNIT II cs: Senses of Engineering Ethics – Variation Moral dilemmas – Moral Autonomy – Kohlb and Controversy –Models of professional role t – Customsand Religion – Uses of Ethical Theo UNIT III Social Experimentation: Engineering a nsible Experimenters – Codes of Ethics – A UNIT-IV Solities and Rights: Safety and Risk – As it Analysis and Reducing Risk – Respect for Eidentiality – Conflicts of Interest – O

<u>UNIT V</u>

Global Issues: Multinational Corporations – Business Ethics - Environmental Ethics – ComputerEthics - Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample Code of Conduct – Corporate Social Responsibility

TEXT BOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.

VII - SEMESTER

EE701C	POWER SYSTEM PROTECTION	3 Credits
Sessional Marks :40	3L:0T:0P	End Examination Marks: 60
 Understand the di Evaluate fault cur Understand the pr Understand the ba Understand syster Protection against ove	he end of this course, students will demonstr fferent components of a protection system. rent due to different types of faults in a network otection schemes for different power system asic principles of digital protection. In protection schemes, and the use of wide-an UNIT-I er voltages: Causes of over voltages-over volt	vork. n components. rea measurements. oltages due to lightning resters-lightning arrester
Insulation coordination - Power system earthin		
	UNIT-II	
Circuit breakers: Intr Definitions - Current c	racteristics, types, HRC fuses. roduction - Formation of Arcs in CBs - arc hopping - Classification of circuit breakers er - SF6 circuit breaker-Vacuum circuit brea	s - Oil circuit breakers-
	UNIT-III	
power system – Zones	fundamentals: Introduction – Need for p s of protection - Primary and backup prot ics of a protective relay – operating	ection – definition and
	UNIT-IV	
applications of over c	Relays : Overcurrent relays – Directional current relays. Distance relays: the univer- nd mhorelays - differential relays – percenta	rsal torque equation –
	UNIT–V	

Generator Protection: Protection against stator faults, against rotor faults and against abnormalconditions.

Transformer Protection: Buchholz relay, differential protection, percentage

differentialprotection.

Busbar protection: - Frame leakage protection scheme

- Badri Ram & D.N. Vishwakarma Power system protection and switch gear., TMHpublishing Company Ltd. 1995.
- 2. C.L. Wadhwa Electrical power systems, Wiley Eastern Ltd.
- 3. B. Ravindranath & M. Chander, power system protection & switch gear., Wiley EasternLtd.

EE702C.i	ELECTRICAL VEHICLES	3 Credits
Sessional Marks :40	3L:0T:0P	End Examination Marks: 60
Course Outcomes: A	t the end of this course, students will demons	trate the ability to
1. Understand tl	ne basics of electric vehicles, technical	l characteristics and
properties ofb	atteries and also to design battery pack.	
2. Know the ratin	gs and requirements of electrical machines.	
3. Apply the rege	nerative braking and sizing of motors.	
4. Configure and	design the components of hybrid electric veh	icles.
	UNIT I	
Electric Vehicles: In	troduction, Components, vehicle mechanics	s – Roadway fundamentals.
	mics of vehicle motion - Propulsion System	•
, ,		6
	UNIT II	
Battery : Basics – Typ	bes, Parameters – Capacity, Discharge rate,	State of charge, state of
Discharge, Depth of I	Discharge, Technical characteristics, Battery	pack Design, Properties
of Batteries.		
	UNIT III	
DC & AC Electrical	Machines: Motor and Engine rating, Requi	rements, DC machines,
three phase A.C mac	hines, Induction machines, permanent mag	net machines, switched

, h reluctance machines.

UNIT IV

Electric Vehicle Drive Train: Transmission configuration, Components - gears, differential, clutch, brakes regenerative braking, motor sizing.

UNIT V

Hybrid Electric Vehicles: Types - series, parallel and series, parallel configuration -Design – Drive train, sizing of components.

Text book:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press, 2011.
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons,2003.

Reference Books:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and FuelCell Vehicles: Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "Electric Vehicle BatterySystems", Newnes, 2000http://nptel.ac.in/courses/108103009/

EE702C.ii	FLEXIBLE AC TRANSMISSION SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will demonstrate the ability to

1. Understand the working principles of FACTS devices and their operating characteristics.

2. Understand the working principles of static shunt and series compensation.

3. Understand the basic concepts of UPFC and IPFC

4. Understand the usage of Static voltage regulators and phase shifters

<u>UNIT-I</u>

Flexible Ac Transmission System: Transmission interconnections, flow of power in ac systems, loading capability, dynamic stability considerations, basic types of FACTS controllers.

UNIT-II

Static Shunt Compensators: Objectives of shunt compensation, static var compensators, STATCOM configuration, characteristics and control, comparison between STATCOM and SVC.

<u>UNIT-III</u>

Static Series Compensation: Objectives of series compensation, Variable Impedance type series compensators, switching converter type series compensators, external control for series reactive compensators.

UNIT-IV

UPFC: Principle of operation and characteristics, independent active and reactive power flow control, comparison of UPFC with the series compensators and phase angle regulators.

IPFC: Principle of operation and characteristics and control aspects.

UNIT-V

Static voltage regulators and phase shifters: Introduction, Principles of operation-Steady statemodel and characteristics - power circuit configurations

<u>Text Books :</u>

- 1. Hingorani ,L.Gyugyi, 'Concepts and Technology of flexible ac transmission system', IEEE Press New York, 2000.
- 2. K.R.Padiyar, "FACTS controllers in power transmission and distribution", New ageInternational Publishers, Delhi, 2007.
- **3.** R. Mohan Mathur and Rajiv K. Varma, 'Thyristor based FACTS controllers forElectrical transmission systems', IEEE press, Wiley Inter science, 2002.

EE702C.iii	RESTRUCTURED POWER SYSTEMS	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will demonstrate the ability to

1. Understand the concepts of Restructuring of Power Industry

2. Understand the basics of Transmission Congestion Management

- 3. Understand the concepts of Locational Marginal Prices and Financial Transmission Rights
- 4. Understand the basics of Ancillary Service Management
- 5. Understand different pricing techniques of Transmission Network

UNIT I

INTRODUCTION TO RESTRUCTURING OF POWER INDUSTRY Introduction:

Deregulation of power industry, restructuring process, Issues involved in deregulation, Deregulation of various power systems – Fundamentals of Economics: Consumer behavior, Supplier behavior, Market equilibrium, short and long run costs, Various costs of production – Market models: Market models based on Contractual arrangements, Comparison of various market models

UNIT II

TRANSMISSION CONGESTION MANAGEMENT Definition of Congestion, reasons for transfer capability limitation, Importance of congestion management, Features of congestion management – Classification of congestion management methods – Calculation of ATC - Non – market methods – Market methods – Nodal pricing – Inter zonal and Intra zonal congestion management – Price area congestion management – Capacity alleviation method.

UNIT III

LOCATIONAL MARGINAL PRICES AND FINANCIAL TRANSMISSION RIGHTS

Locational marginal pricing– Lossless DCOPF model for LMP calculation – Loss compensated DCOPF model for LMP calculation – ACOPF model for LMP calculation – Financial Transmission rights – Risk hedging functionality -Simultaneous feasibility test and revenue adequency – FTR issuance process: FTR auction, FTR allocation — Flow gate rights – FTR andmarket power

UNIT IV

ANCILLARY SERVICE MANAGEMENT Introduction of ancillary services – Types of Ancillary services – Classification of Ancillary services – Load generation balancing related services – Voltage control and reactive power support devices – Black start capability service

UNIT V

PRICING OF TRANSMISSION NETWORK Transmission pricing – Principles –Classification – Rolled in transmission pricing methods – Marginal transmission pricing paradigm – Composite pricing paradigm – Merits and demerits of different paradigm.

Text Books / References:

- 1. Sally Hunt," Making competition work in electricity", , John Willey and Sons Inc. 2002
- 2. Steven Stoft," Power system economics: designing markets for electricity", John Wiley &Sons, 2002.
- 3. Mohammad Shahidehpour, Muwaffaq Alomoush, Marcel Dekker, "Restructured electricalpower systems: operation, trading and volatility" Pub., 2001
- 4. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen," Operation of restructured powersystems", Kluwer Academic Pub., 2001.

EE703C.i	POWER SYSTEM OPERATION AND CONTROL	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to 1. Understand economic operation and analyze methods for unit commitment of power systems. 2. Analyze voltage control and frequency regulation methods. 3. Realize stability issues and reactive power compensation. 		
Economic operati	UNIT-I on of power systems: Introduction – operati	ng cost of a thermal

Economic operation of power systems: Introduction – operating cost of a thermal plant –Economic dispatch neglecting losses and no generation limits –Economic dispatch including losses - derivation of loss formula - Hydroelectric power plant model – Scheduling of hydropower plant.

UNIT-II

Unit commitment and optimal power flow constraints of unit commitment problem – Solution methods of unit commitment – priority list methods – Dynamic programming approach to solve the unit commitment problem - optimal power flow solution – Elementary treatment of optimal power flow with and without constraints

UNIT-III

Load frequency control: The load frequency control problem – Basic P-f and Q-V control loops of a synchronous generator – Governor model- prime mover model – Generator model – Load model – concept of Single & Multi area power systems – Block diagrams representation of an isolated single area power system – steady state and dynamic responses of uncontrolled and proportional plus integral control of single area power system – load frequency control of two-areapower system – Tie line bias control.

UNIT-IV

Automatic voltage regulator – introduction - modeling of amplifier, exciter, Generator and sensor – A simplified AVR block diagram – Excitation system stabilizer – Rate feedback and PID controller – automatic excitation generation control with system – placement and optimal feed- back design.

UNIT-V

Voltage stability and reactive power control- voltage stability problems in a power system –over flow of reactive power control – control of reactive power flow on a line – load compensation

- specification of load compensator - uncompensated and compensated transmission lines

- 1. "Power system analysis" by Hadi Saadat, Tata Mc Grawhill International.
- 2. "Modern power system analysis" by J. Nagarath & DP Kothari, Tata Mc Grawhill secondedition
- 3. "Power system analysis and design" by B.R. Gupta wheeler publishing
- 4. "Electrical energy system theory" by O.I. Elgerd Tata Mc Grawhill Ltd second edition.

EE703C.ii	POWER SEMICONDUCTOR CONTROLLED DRIVES	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to 1. Understand the fundamental concepts of electrical drives. 2. Understand the principles of speed-control of dc motors and induction motors. 3. Understand the power electronic converters used for dc motor and induction motor speed control. 		
	UNIT-I	

Electrical Drives – An introduction – Electrical Drives, Advantages of Electrical Drives, parts of electrical drives – Electrical motor, power modulators, sources, control unit, choice of electricaldrives, status of dc and ac drives.

Dynamics of Electrical Drives – Fundamental Torque equations, speed torque convention and multi quadrant operation, Equivalent values of drive parameters – Loads with rotational motion, loads with translational motion, measurement of moment of inertia. Components of load torques, Nature and classification of load torques, calculation of time and energy loss in transient operation, steady state stability, load equalization.

UNIT-II

Control of electrical drives – Modes of operation, speed control and drive classifications closedloop control of drives.

D.C. Motor drives – Starting, Braking, speed control - Armature voltage control, Ward Leonard drives, controlled rectifier fed DC drives – Single phase and 3-phase fully controlled and half controlled converter fed separately excited D.C. Motor, Chopper Controlled DC drives. (separately excited motor).

UNIT-III

Induction Motor Drives: Review of three phase I.M., analysis and performance. Operation with unbalanced source voltages and single phasing, analysis of I.M. fed from non-sinusoidal voltage supply. Starting, Braking, methods

UNIT-IV

Speed control methods of IM, v/f controlled induction motors, controlled current and controlled slip operation, PWM inverter drives, Multi-quadrant drives and field oriented control, slip power control, single phase I.M. Close loop control of I.M. Drives.

UNIT-V

Synchronous motor drives: cylindrical rotor wound field motor, Salient pole wound field motor, Synchronous reluctance motor, Hysteresis synchronous motor, Operation from fixed frequency supply, starting, braking, synchronous motor, variable speed drives,

starting large synchronous machines.

Energy Conservation in electrical drives – Losses in electrical drive system, measures of energy conservation in electrical drives, use of efficient converters, energy efficient operation of drives, improvement of p.f., improvement of quality of supply, maintenance of motors.

- 1. G.K.Dubey Fundamentals of Electrical drives.
- 2. Vedam Subrahmanyam Electrical drives Concepts and applications.

EE703C.iii	POWER QUALITY	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

1. Understand the basic concepts of power quality.

- 2. Understand the basic concepts of voltage variations and transients
- 3. Understand different harmonics in power systems
- 4. Understand the working of Power quality conditioners

UNIT –I

Electric power quality phenomena- IEC and IEEE definitions - power quality disturbances-voltage fluctuations – transients – unbalance - waveform distortion - power frequency variations.

<u>UNIT-II</u>

Voltage variations- Voltage sags and short interruptions – flicker-longer duration variations - sources – range and impact on sensitive circuits-standards – solutions and mitigations – equipment and techniques.

UNIT-III

Transients – origin and classifications – capacitor switching transient – lightning-loadswitching – impact on users – protection – mitigation.

<u>UNIT –IV</u>

Harmonics – sources – definitions & standards – impacts - calculation and simulation –harmonic power flow - mitigation and control techniques – filtering – passive and active.

UNIT-V

Power Quality conditioners – shunt and series compensators- DStatcom- Dynamic voltagerestorer-unified power quality conditioners-case studies.

<u>Text Books:</u>

- 1. Bollen, M.H.J., 'Understanding Power Quality Problems: Voltage sags and interruptions', IEEE Press, New York, 1999.
- 2. Arrillaga, J, Watson, N.R., Chen, S., 'Power System Quality Assessment', Wiley, New York, 1999.
- 3. Heydt, G.T., 'Electric Power Quality', Stars in a Circle Publications, Indiana, 1991.

EE704C.i	HVDC TRANSMISSION	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

- 1. Differentiate between AC and DC transmission, their advantages and applications
- 2. Analyze HVDC converters and converter bridge characteristics
- 3. Understand the particulars of converters and HVDC system control and reactive powercontrol
- 4. Identify Converter faults and protection carried.
- 5. Understand harmonics, filters and different multi terminal systems

<u>UNIT-I</u>

DC Power Transmission Technology:

Introduction, Comparison of AC DC transmission, Converter station, Description of DC Transmission systems, Components of a HVDC system. Choice of voltage level, Modern trends in DC transmission

UNIT-II

Analysis of HVDC Converters:

Pulse number, Choice of converter configuration, valve rating. Transformer, simplified analysis of graetz circuit with and without overlap (2 and 3 valve conduction mode) rectifier and inverter waveforms, converter bridge characteristics

UNIT-III

Converter and HVDC System Control:

Principle of DC Link control, Converter control characteristics, system and control hierarchy, firing angle control, converter and excitation angle control, starting and stopping of DC Link, Power control, Sources of reactive power, static var systems.

UNIT-IV

Converter Faults:

Protection against over currents, over voltages in converter station, surge arresters, protection against over voltages

Smoothing reactor, DC Line, Transient over-voltages in DC line, protection of DC line, DCbreakers.

UNIT-V

Generation of Harmonics, Design of AC Filters, Dc Filters, Carrier frequency and RI noise. **MTDC Links** Multi-Terminal and Multi-Infeed Systems. Series and Parallel MTDC systems using LCCs. MTDC systems using VSCs. Modern Trends in HVDC Technology. Introduction to Modular Multi-level Converters.

- 1. K R Padiyar, "HVDC Transmission Systems"
- 2. S. Rao, "EHV AC and HVDC Transmission engineering and Practice"
- 3. J.Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd., 1983.
- 4. E.W.Kimbark, "Direct Current Transmission", Vol.1, Wiley-Interscience, 1971.

EE704C.ii	HIGH VOLTAGE ENGINEERING	3 Credit
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 6
 Understand the liquid andgased Knowledge of t standards. 	t the end of the course, the student will demo basic physics related to various breakdown pous insulating materials. generation and measurement of D. C., A.C. ests on H. V. equipment and on insulating m now over-voltages arise in a power system, a	processes in solid, ., & Impulse voltages. naterials, as per the
against theseov	rer-voltages.	
Ducalidaria 1911	UNIT-I quid and gas insulating materials	
insulating materials, B Streamer mechanism, Solid dielectrics and breakdown and ther	and de-ionization processes, Types of reakdown in Uniform gap, non-uniform gap Corona discharge Breakdown in pure and composite dielectrics, intrinsic breakdow mal breakdown, Partial discharge, applie	os, Townsend's theory, d commercial liquids, vn, electromechanical
materials.		
Generation of High V	UNIT-II	
Generation of high vo Generator, Cockcroft	Itages, generation of high D. C. and A.C. vo Walton Voltage multipliers, Cascade voltages, generation of impulse currents, t	transformer circuits,
	UNIT-III	
Measurements of Hig	h Voltages and Currents	
oscillo graphs for imp	voltage and high direct current measureme oulse voltage and current measurement, me c, partial discharge measurements.	-
	UNIT-IV	
-	ing Over-voltages clouds, Stepped leader, Dart leader, Lightni ion against over-voltages, Surge diverters, at	
	UNIT-V	
Various standards for 2 of insulators and bushi power transformers and	g of Electrical Apparatus and High V HV Testing of electrical apparatus, IS, IE ngs, testing of isolators and circuit break d some high voltage equipment, High volt oratories, testing facility requirements, safet	EC standards, Testing ters, testing of cables, tage laboratory layout,

Text/Reference Books:

- 1. M.S. Naidu and V. Kamaraju, "High Voltage Engineering", Mc Graw Hill Education, 2013.
- 2. C. Wadhwa, "High Voltage Engineering", New Age International Publishers, 2007.
- 3. D.V. Razevig (Translated by Dr. M. P. Chourasia), "High Voltage Engineering Fundamentals", Khanna Publishers, 1993.
- 4. E. Kuffel, W.S. Zaengl and J. Kuffel, "High Voltage Engineering Fundamentals", NewnesPublication, 2000.
- 5. R.Arora and W.Mosch "High Voltage and Electrical Insulation Engineering", John Wiley & Sons, 2011. Various IS standards for HV Laboratory Techniques and Testing

EE704C.iii	SMART GRID	3 Credits
Sessional Marks: 40	3L:0T:0P	End Examination Marks: 60

- 1. Understand smart grids and analyze the smart grid policies and developments in smart grids.
- 2. Develop concepts of smart grid technologies and their applications.
- 3. Analyze micro grids, distributed generation systems, the effect of power quality in smart gridand understand latest developments in ICT for smart grid.

UNIT – 1

Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self-Healing Grid, Present development & International policies on Smart Grid. Case study of Smart Grid.

UNIT – 2

Smart Grid Technologies-I: Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading (AMR), Outage Management System (OMS), Plug in Hybrid Electric Vehicles (PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase ShiftingTransformers.

UNIT - 3

Smart Grid Technologies-II: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices (IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).

UNIT – 4

Micro grids and Distributed Energy Resources: Concept of micro grid, need & applications of microgrid, formation of microgrid, Issues of interconnection, protection & control of microgrid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, microturbines, Captive power plants, Integration of renewable energy sources.

UNIT – 5

Power Quality Management in Smart Grid: Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit. **Information and Communication Technology for Smart Grid:** Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN).

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and RenewableEnergy in Electric Power Systems", Wiley
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and DemandResponse", CRC Press

Reference Books:

- 1. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "SmartGrid: Technology and Applications", Wiley
- Jean Claude Sabonnadière, Nouredine Hadjsaïd, "Smart Grids", Wiley Blackwell 19
- 3. Peter S. Fox Penner, "Smart Power: Climate Changes, the Smart Grid, and the Future of ElectricUtilities", Island Press; 1 edition 8 Jun 2010
- 4. S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution Networks."Institution of Engineering and Technology, 30 Jun 2009
- 5. Stuart Borlase, "Smart Grids (Power Engineering)", CRC Press 6. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability: 1", Artech House Publishers July 2011

EE707 L	POWER SYSTEM SIMULATION LAB	1.5 Credit
Sessional Marks: 40	0L:0T:3P	End Examination Marks: 6
Pre-requisites: Pow	ver systems-II, Power System Analysis, Power	System Operation and
Control,Power Syst	em Protection	
Course Outcomes	: At the end of the course, the student will be a	ble to:
-	nsmission systems under steady state and trans	sient conditions
	It calculation and network protection	
3. Understand	the performance of renewable energy systems	3
	LIST OF EXPERIMENTS	
	on of Receiving end quantities and the line	performance of a
	gtransmission line using simulation tool.	
	puter code determine:	· · · · 2 1
	Bus admittance matrix by inspection method f	or a 3-bus power system and
ii. l	Power flow solution by Newton-Raphson meth	nod.
	on of Sequence components (Positive, Nega rusing simulation tool.	ative and Zero) of an
	nalysis of a Single Machine Infinite Bus (SMII	B) system using simulation
5. Simulation	of LG, LL, LLG and LLL faults on a simple p	ower system.
	steady state frequency error and frequency dev lated power system and	iation response for an
ii. Int	terconnected power system.	
	ving curve for a simple 3 or 4 bus power system	
•	Over current protection scheme using numerica	•
	tion of ABCD parameters and performance of	
10. Determinat alternator	tion of Positive, Negative and Zero sequence r	eactance for a 3-phase
	Additional Experiments	
1. Plot V-I char	acteristics of Solar panel at various levels of in	nsolation.
2. Study the pe thecharacteri	rformance of a Wind turbine system at diffension of a Wind turbine system at diffension of a wind turbine system at the system of a system	erent wind speeds and plot
3. Determination	on of Earth resistance in humid and dry earth c	onditions.

EE708 S	IOT LAB	2 Credits
Sessional Marks: 40	1L:0T:2P	End Examination Marks: 6
Course Outcomes: At	t the end of the course, the student will be al	ble to:
1. Control different	t electrical and electronics applications usin	g Arduino
2. Control different	t electrical and electronics applications using	g Raspberry Pi
	List of Experiments	
1. Interfacing LED, I	Push button using Arduino.	
2. Interfacing DHT1	1- Temperature and humidity sensor using A	rduino.
3. Interfacing Ultrase	onic sensor using Arduino.	
4. Interfacing PIR set	nsor using Arduino.	
5. Design of Traffic I	Light Simulator using Arduino.	
6. Interfacing RFID u	using Arduino/ Raspberry Pi	
7. Interfacing of LEI	D, Push button with Raspberry Pi (Python Pr	rogram).
8. Design of Motion	Sensor Alarm using PIR Sensor.	
9. Interfacing DHT1	1-Temperature and Humidity Sensor with Ra	spberry Pi.
10. Implementation of	DC Motor and Stepper Motor Control with	Raspberry Pi.
	Project based experiments:	
1. Raspberry Pi based	d Smart Phone Controlled Home Automation	1.
2. Smart Traffic light	t Controller.	
3. Smart Health Mon	itoring System.	

HONORS

EEHN01	ELECTRICAL MACHINE DESIGN	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
 Understand Understand Understand Understand Understand 	At the end of this course, students will den the construction and basic design of transf the design of rotating machines the design of 3-phase Induction motor the design of synchronous machines. Heating and Cooling of Electrical Machin	formers

UNIT-I

The design Problem: Basic considerations, design specifications, IS specifications, design constraints, design specifications for transformers and rotating machines Design of transformers: Types of core constructions, output equation, principles of design of core, windings, yoke, estimation of main dimensions (H & W) for single phase shell type, core type and 3-phase core type transformers Estimation of no-load current from design data

UNIT-II

General Concepts for design of rotating machines: Output equation of dc and ac machines, separation of D and L, Choice of specific loadings Design of dc machines: Choice of number of poles, selection of number of armature slots, choice of armature winding, design of armature, design of commutator Design of field system: tentative design of field system, estimation of filed current

UNIT-III

Design of 3-phase Induction motor: separation of D and L, ranges of specific loadings Stator Design, selection of number of slots, estimation of turns per phase, design of conductor cross section Rotor design: Selection of number of rotor slots, principles of design of squirrel cage and slip ring rotor

UNIT-IV

Design of synchronous machines: Choice of armature windings, types of armature windings, separation of D and L Design of armature, choice of number of slots, estimation of turns per phase conductor cross section, field system design for salient pole and cylindrical pole rotor machines

UNIT-V

Heating and Cooling of Electrical Machines: Estimation of temperature rise, heating time constant, cooling time constant, heating and cooling time curves, volume of coolant required Design of transformer tank with tubes: estimation of temperature rise, design of transformer tank

TEXT BOOKS:

- 1. A.K.Sawhney, "Electrical Machine Design" (Dhanpatrai & Sons)
- 2. Balbir Singh, "Electrical Machine Design" (Khanna Publishers)

EEHN02	ADVANCED POWER SYSTEM PROTECTION	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
Course Outcomes:	At the end of this course, students will den	nonstrate the ability to
1. Learn the imp	ortance of static relays.	
2. Apply appropriate the second secon	riate comparator	
3. Learn about d	igital protection	
	UNIT: 1	
Static Relays: Fund	amentals of static relays, Basic Block diag	ram and principle, Advantages
of Static Relays, Typ	pes of static relays, Static Over-current rela	ays, Differential relays,
Percentage Different	tial relays, distance relays, characteristics of	of static relays.
	UNIT: 2	
Comparators: Need of comparators, General Equations of Comparators, Phase and amplitude Comparators, Analysis of Amplitude and Phase Comparators, Operating principles, Pilot relaying and Carrier current protection schemes, Multi Input Comparator circuits		
	UNIT: 3	
Protection of Transmission lines & Transformers : Classification of protection schemes, zones of protection, 3–zone protection schemes, carrier aided distance schemes, switched distance schemes, Transformer protection, mal operation of relays, Harmonic Restraint relay, Wavelet applications in transformer protection, realization of Elliptical and Quadrilateral characteristics		
UNIT: 4		
Basic elements of Digital Protection : Historical Developments in digital protection, performance and operational characteristics of digital protection, basic structure of digital relays, components of digital relay, signal conditioning subsystem, conversion subsystem,		

digital relay subsystem

UNIT: 5

Digital Protection Of Power System Components: New developments in relaying principles, Generator protection, Transmission lines protection, transformer protection, protection of bus bars, fundamentals of travelling wave protection and applications

- 1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009
- 2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999
- 3. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006
- 4. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014 5. Electrical Power Systems C.L. Wadwa

EEHN03	DIGITAL CONTROL SYSTEMS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

1. Identify the basic difference between continuous and digital time control.

2. Evaluate the stability of a system under different placements.

3. Design the digital controllers for industrial applications.

4. Analyze the discrete time systems with state space analysis techniques.

UNIT – I

Introduction – Comparison between analog and digital control – Importance of digital control – Structure of digital control – examples of digital control system – Difference equations – Z – transform – MATLAB examples. Frequency response of discrete-time systems – Properties of frequency response of discrete-time systems – Sampling theorem.

UNIT – II

ADC model – DAC model – Transfer function of zero order hold – DAC – Analog Subsystem, and ADC Combination Transfer Function – Closed loop transfer function – Steady state error and its constants (MATLAB commands).

UNIT – III

Definitions of stability (Asymptotic stability, exponential stability etc) – stable z-domain pole placement locations – stability conditions – Stability determination (Routh array) – Nyquist criterion.

UNIT – IV

Root locus – root locus design (P-control, PI -control, PD) – Z - domain root locus – zdomain root locus design digital implementation of analog controller design (differencing methods forward and backward) – bi linear transformation – direct z-domain controller design – frequency response design – Finite time response settling time.

UNIT – V

Concept of state space method – state space representations of discrete time systems – solving discrete time state space equations – Pulse transfer function matrix – Discretization of continuous state space equations – Liapunov stability analysis (discrete time) Controllability – observability – design via pole placement – state observers.

- 1. Kannan M. Moudgalya, 'Digital Control', Wiley Publishers, 1st Illustrated Edition, 2007.
- 2. M.Gopal, 'Digital Control Engineering', New Age International (ltd) Publishers, 1st Edition Reprint (2003), 1998.
- 3. Katsuhiko Ogata, 'Discrete Time Control Systems', Pearson Education Publications, 2nd Edition, 2005.

EEHN04	ADVANCED POWER ELECTRONICS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

Course Outcomes: At the end of the course, students will be able to

1. Learn the characteristics of GTOs, IGBTs and use them in practical systems

2. Knowledge of working of multi-level VSIs, DC-DC switched mode converters, cyclo- converters and PWM techniques and the ability to use them properly

- 3. Acquire knowledge of power conditioners and their applications
- 4. Ability to design power circuit and protection circuit of PSDs and converters

UNIT-I

High-Power Switching Devices: Gate Turn-Off (GTO) Thyristor, Gate-Commutated Thyristor (GCT), Insulated Gate Bipolar Transistor (IGBT), Other Switching Devices, Operation of Series- Connected Devices Main Causes of Voltage Unbalance, Voltage Equalization for GCTs, Voltage Equalization for IGBTs

UNIT-II

Two-Level Voltage Source Inverters: Introduction, Sinusoidal PWM, Modulation Schemes, Harmonic Content Over-modulation, Third Harmonic Injection PWM, Space Vector Modulation Switching States, Space Vectors, Dwell Time Calculation, Modulation Index Switching Sequence, Spectrum Analysis, Even-Order Harmonic Elimination, Discontinuous Space Vector Modulation

UNIT-III

Cascaded H-Bridge Multilevel Inverters: Introduction, H-Bridge Inverter Bipolar Pulse-Width Modulation, Unipolar Pulse-Width Modulation, Multilevel Inverter Topologies, CHB Inverter with Equal dc Voltage, H-Bridges with Unequal dc Voltages, Carrier Based PWM Schemes, PWM Schemes, Staircase Modulation

UNIT-IV

Diode-Clamped Multilevel Inverters : Three-Level Inverter, Converter Configuration, Switching State, Phase-Shifted Multicarrier Modulation, Level-Shifted Multicarrier Modulation, Comparison Between Phase- and Level-Shifted Commutation, Space Vector Modulation, Stationary Space Vectors, Dwell Time Calculation, Relationship Between *Vref*, Location and Dwell Times Switching Sequence Design, Inverter Output Waveforms and Harmonic Content, Even-Order Harmonic Elimination, Neutral-Point Voltage Control, Causes of Neutral-Point Voltage Deviation, Effect of Motoring and Regenerative Operation, Feedback Control of Neutral-Point Voltage

UNIT-V

Other Space Vector Modulation Algorithms: Discontinuous Space Vector Modulation, SVM Based on Two-Level Algorithm, High-Level Diode-Clamped Inverters, Four- and Five-Level Diode-Clamped Inverters, Carrier-Based PWM, NPC/H-Bridge Inverter: Inverter Topology, Modulation Scheme, Waveforms and Harmonic Content

- Bin Wu ," High Power Converters and AC Drives (IEEE Press 2008)
 By Dorian O Neacsu, "Power Switching Converters: Medium and High Power"

EEHN05	HYBRID ELECTRICAL VEHICLES	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

1. Understand the basics and configurations of electric vehicles and hybrid electric vehicles.

- 2. Analyze the power converters used in hybrid electric vehicles
- 3. Know different batteries and other energy storage systems.

UNIT-1

Introduction: History of hybrid vehicles, architectures of HEVs, series and parallel HEVs, complex HEVs.

UNIT-2

Hybridization of Automobile: Fundamentals of vehicle, components of conventional vehicle and propulsion load, Drive cycles and drive terrain; Concept of electric vehicle and hybrid electric vehicle, Plug-in hybrid vehicle, constituents of PHEV, comparison of HEV and PHEV, Fuel Cell vehicles and its constituents.

UNIT-3

Plug-in Hybrid Electric Vehicle: PHEVs and EREVs blended PHEVs, PHEV Architectures, equivalent electric range of blended PHEVs; Fuel economy of PHEVs, power management of PHEVs, end-of-life battery for electric power grid support, vehicle to grid technology, PHEV battery charging.

UNIT-4

Power Electronics in HEVs: Rectifiers used in HEVs, voltage ripples; Buck converter used in HEVs, non-isolated bidirectional DC-DC converter, regenerative braking, voltage source inverter, current source inverter, isolated bidirectional DCDC converter, PWM rectifier in HEVs, EV and PHEV battery chargers.

UNIT-5

Battery and Storage Systems: Energy Storage Parameters; Lead–Acid Batteries; Ultra capacitors; Flywheels - Superconducting Magnetic Storage System; Pumped Hydroelectric Energy Storage; Compressed Air Energy Storage - Storage Heat; Energy Storage as an Economic Resource Course.

- 1. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2014.
- Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

Reference Books:

- 1. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
- 3. H. Partab: Modern Electric Traction DhanpatRai& Co, 2007.
- 4. Pistooa G., "Power Sources, Models, Sustainability, Infrastructure and the market", Elsevier 2008
- 5. Mi Chris, Masrur A., and Gao D.W., "Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives" 1995.

EEHN06	INDUSTRIAL APPLICATIONS OF ELECTRICAL ENGINEERING	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
 Course Outcomes: At the end of this course, students will demonstrate the ability to Select appropriate wiring components for electrical safety practices. Design the HT connection with appropriate protection and compensations for Industrial, Residential and commercial applications. 		

- 3. Evaluate and select an appropriate motor to a particular application.
- 4. Design a lightning scheme for interior and exterior illumination application.

UNIT-I

Components in Electrical Systems: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices.

UNIT – II

Industrial Electrical Systems: HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction - kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

UNIT – III

Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components.

UNIT – IV

Special-Purpose Motors: Textile motors, Crane motors, determining the size of motor, Sugar centrifuge motors, Motors for deep-well pumps, Motors for agricultural application, Motors for mines, collieries and quarries, Motors for thermal power station auxiliaries, Selection of a special- purpose motor.

UNIT – V

Illumination Systems: Production of light, Laws of illumination, lighting calculation, Interior and exterior illumination systems, lighting schemes, design on lighting scheme; Electrical lamps, factory lighting, flood lighting, gaseous discharge lamps, high pressure and low-pressure neon lamps, high frequency, low pressure discharge tubes, induction lamps, LED lamps, Simple problems.

- 1. S. L. Uppal and G. C. Garg," Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- 2. K. B. Raina," Electrical Design, Estimating & Costing", New age Inter- national, 2007.
- 3. S. Singh and R. D. Singh," Electrical estimating and costing", Dhanpat Rai and Co., 1997.
- 4. H. Joshi," Residential Commercial and Industrial Systems", McGraw Hill Education, 2008
- 5. K.C.Agarwal "Industrial Power Engineering and Applications Handbook", Newnes Power Engineering Series., 2001

MINOR

EEMN01	ELECTRICAL CIRCUITS AND NETWORKS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

1. Understand pre requisites of Electric circuits

- 2. Apply network theorems for the analysis of electrical circuits.
- 3. Understand and Analyze AC Circuits

UNIT-1

Elementary Concepts: Prerequisite: Concept of Potential difference. Current and resistance. Ohm's law, effect of temperature on resistance, resistance temperature coefficient, insulation resistance. SI units of work Power and Energy. Conversion of energy from one form to another in electrical and thermal systems.

UNIT -2

D. C. Circuits: Kirchhoff's law, ideal and practical voltage and current sources. Mesh and Nodal analysis (Super node and super Mesh excluded). Source transformation. Star delta transformation. Superposition theorem, Thevevnins's theorem Norton's theorem, maximum power transfer theorem (Source transformation not allowed for superposition theorem, Mesh and Nodal analysis.

UNIT-3

A.C. Fundamentals: Sinusoidal voltage and currents, their mathematical and graphical representation, concept of cycle period, frequency, instantaneous, peak, average, r.m.s. values, peak factor, and form factor, phase difference, lagging, leading and in phase quantities and phasor representation. Rectangular and polar representation of phasors.

Study of A.C circuits of pure resistance, inductance and capacitance and corresponding voltage- current phasor diagrams, voltage – current and power waveforms.

UNIT-4

Single phase AC Circuits: Study of series and parallel R-L, R-C, R-L-C circuits, concept of impedance and admittance for different combinations, wave form and relevant voltage current phasor diagrams. Concept of active, reactive, apparent, complex power and power factor, resonance in series and parallel RLC circuit. Q-factor and bandwidth

UNIT-5

Polyphase AC circuits: Concept of three phase supply and phase sequence. Balanced and unbalanced loads voltage current and power relations in three phase balance star and delta loads and their phasor diagrams.

- 1. Engineering Circuit Analysis William H Hayt et al Mc Graw Hill 8th Edition, 2014
- 2. Network Analysis M.E. Vanvalkenburg Pearson 3rd Edition, 2014
- 3. Fundamentals of Electric Circuits Charles K Alexander Matthew N O Sadiku Mc Graw Hill 5thEdition,2013

Reference Books:

- 1. Engineering Circuit Analysis J David Irwin et al Wiley India 10th Edition, 2014
- 2. Electric Circuits Mahmood Nahvi Mc Graw Hill 5th Edition, 2009
- 3. Introduction to Electric Circuits Rich ard C Dorf and James A Svoboda Wiley 9th Edition, 2015
- 4. Circuit Analysis ; Theory and Practice Allan H Robbins Wilhelm C Miller Cengage 5th Edition,2013
- 5. Basic Electrical Engineering V K Mehta, Rohit Mehta S Chand 6th Edition 2015

EEMN02	ELECTRICAL MACHINES	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 6
 Understand d Analyze and Machine Understand T Understand t 	t the end of the course, students will be a ifferent types of DC generators, Motors understand performance aspects of variou ransformers, their construction, operation he operation of AC machine ormance characteristics of AC machines	s testing methods of DC
	UNIT- I	
Equation–Numer Self Excited Ger	 Principle of Operation – Construction Fical Problems – Methods of Excitation – Science of Build-Up of E.M.F - Critical Load Characteristics of Shunt, Seited Science of Sc	Separately Excited and Field Resistance and
	UNIT – II	
Characteristics ar Control of D.C.	Principle of Operation – Back E.M.F ad Application of Shunt, Series and Comp Motors: Armature Voltage and Field Flu ter-Losses – Constant & Variable Loss	pound Motors-Speed ux Control Methods.
-	UNIT-III ransformers - Constructional Details- Load and on Load - Phasor Diagrams-E	-
	ciency-Regulation-OC and SC Tests – of Efficiency and Regulation.	Sumpner's Test -
	UNIT-IV	
Machines Prin	tion Motors-Construction Details of Cag ciple of Operation – Slip- Rotor Emf ar Torque Slip Characteristics.	-
	UNIT – V	
E.M.F Equation	nstructional Features of Salient Pole and F Voltage Regulation by Synchronous ion of Synchronous Motor.	
	es –by I.J.Nagrath & D.P.Kothari,Tata Mc Engineering –By T.K. Nagasarkar and M.S	

REFERENCE BOOKS:

- 1. Electrical and Electronic Technology, Hughes, Pearson Education.
- 2. Electrical Machines, P. S. Bimbhra, Khanna Publishers, 2011.
- 3. Basic Electrical Engineering, 2 nd Edition, V.N. Mittle and Aravind Mittal, Mc Grawhill Education, 2006.

EEMN03	POWER SYSTEMS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

Course Outcomes: At the end of this course, students will be able to

- 1. Analyze Economic aspects of power stations
- 2. Understand the concepts of AC Distribution and Substations of power systems.
- 3. Study and analyze Overhead line insulators and Underground cables

UNIT-I

Fundamentals of Power Systems: Evolution of Power Systems-Present day Scenario-Structure of Power Systems-Conventional & Renewable Energy Sources Power Stations: Hydro-electric, Thermal Stations, Gas Turbine and Nuclear Power stations- Selection of Site, Main parts, layout and working principle, Basics of Renewable Energy Sources

UNIT-II

Economic aspects of power stations- Types of loads-Load curve, load duration and integrated load duration curves-Load factor-Demand factor-Diversity factor-Capacity factor-Utilization and plant use factors. The effect of these factors on generation-Number and size of generating units- Base load and peak load plants-Costs of electrical energy-Types of tariff charges on consumers

UNIT-III

AC Distribution: Comparison of AC single phase, 3 phase 3 wire and 3 phase 4 wire systems with DC 2 wire-Types of primary distribution systems-Types of secondary Distribution systems-AC distributors fed at one end and at both ends-Kelvin's Law-Limitations of Kelvin's Law-Load Estimation-Selection voltage of primary distribution-Choice of scheme-Size of feeders, power factor correcting methods.

UNIT-IV

Substations: Number and size-Location and installation-The main equipment in substations-Busbar Arrangements-Key diagram of a typical primary substation. **Overhead line insulators:** Introduction-Types of insulators-Potential distribution over a string of insulators-Methods of equalizing the potential, string efficiency-Testing of insulators.

UNIT-V

Underground Cables: Introduction-The insulation types-Insulating materials for EHV voltage cables-Classification of cables - Parameters of single core cable-Grading of cables-Capacitance of three core belted cable break down of cables-Heating of cables – dielectric loss and Sheath losses- Current rating of cables.

- 1. C.L. Wadhwa, "Electrical Power systems" New age publications.
- 2. B.R. Gupta, "Power system analysis and design" third edition, Wheeler publishing.
- 3. William D. Stevenson "Elements of power system analysis" fourth edition, Mc

Grawhill International editions.

Reference Books:

- 1. C.L. Wadhwa, "Generation Distribution and utilization of Electrical energy", New Age International
- 2. AR Bergen and Vijay Vittal, "Power system analysis", Pearson education, 2001

EEMN04	CONTROL SYSTEMS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
 Understand the Understand the systems. 	At the end of this course, students will den e modeling of linear-time-invariant system e concept of stability and its assessment f e applications of control systems in indus	ns using transfer function. or linear-time invariant
of Control System – Control system t	UNIT–I ontrol systems: Scope of Control System – Historical development of Control syst echnologies – Types of control Systems: ges and disadvantages of control system ntrol systems.	em – System representation open loop and closed loop
	UNIT-II	
Mathematical mod	deling of physical systems: Transfer deling and transfer functions of electrices – Block diagram reduction technique	cal, mechanical systems –
	UNIT-III	
order systems – Tin Introduction to st	lysis: Standard test input signals – step me domain specifications – Problems. ability – Necessary conditions for stabilits in s-plane for stability – R-H stability C	ty – Characteristic equation
	UNIT-IV	
Specifications – C Frequency response Non linear system	n analysis: Introduction to frequency do orrelation between time domain and free e plots – Polar plots – Bode plots. ns – Introduction – Common physical ne Friction, Hysteresis etc.	quency domain responses –
	UNIT-V	
Transfer function or Controllers: Introd	ompensators – Need for compensators – of compensators – Comparison of compen- duction to controllers – Need for controllers of controllers – Comparison of controllers	sators. ers – Types of Controllers –
 Benjamin C. Ch. Chengaia Manual", B.S 	nd M.Gopal, "Control system Engineering Kuo, "Automatic Control system", Prenti h and G.V Maruteswar, "Control System . Publications, 2017. ani, "Advanced Control Theory", CBS Pu	ce Hall, 1995. s A comprehensive Lab

EEMN05	POWER ELECTRONICS	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60
 Understar Analyze c Analyze t 	At the end of this course students will den ad the differences between signal level and controlled rectifier circuits. he operation of DC-DC choppers. he operation of voltage source inverters.	•
UNIT-I Silicon controlled Rectifier – Static characteristics and ratings – turn- ON and turn- OFF mechanism – Gate characteristics – Series and parallel operation of SCR's static and dynamic equalization circuits – Protection circuits – Design of snubber circuit – Class A, B, C, D, E types of commutation circuits.		
UNIT-II Phase controlled Rectifiers - Principles of phase control – Half-wave and full- wave controlled rectifiers with resistive, inductive and RLC load – Freewheeling diode operation – Bridge rectifiers – Single phase and three phase Rectifiers with inductive load – Half and fully controlled rectifiers – freewheeling diode operation – Effect of source inductance –		
Dual converter – cii	culation and non-circulating current mode	e of operation.
variable frequency	UNIT-III Choppers – Principles of operation – cont system, current limit control – Types of o chopper circuits Morgan chopper Jone's c	chopper circuits – Type-A,
UNIT-IV Inverters – Classification – series and parallel inverters improved series inverters – Bridge inverters – Commutation circuits – current and voltage commutation circuits – single phase and three phase inverters – output waveform control – Mc Murray Inverter – Introduction to PWM techniques		
	UNIT-V	
cycloconverters – 7 circulation and no cycloconverter. Speed control – Sp	- Principle of operation – single phas Three-phase half-wave cycloconverters – on- circulating current mode of operate eed control of DC motors using controlle fluction motors using inverters	output voltage equation – tion – Load commutated
Text Books:		
East West 2. Power Elec 3. Power Elec Mc.Graw I	ction to Thyristors and their application – press. ctronics - Dr. P.S .Bimbhra 2 nd edition – K ctronics – M.D. SINGH and K.B. KHANG Hill publishers. and Power Electronics – RASHID (3 rd Edir	Thanna publishers. CHANDANI – Tata
		Page 122 of 124

EEMN06 E	ELECTRONICS ENGINEERING	4 CREDITS
Sessional Marks: 40	3L:1T:0P	End Examination Marks: 60

- 1. Analyze the general and special-Purpose diode circuits
- 2. Design biasing circuits for BJT
- 3. Analyze BJT Circuits in small-signal domain
- 4. Analyze basic FET Circuits
- 5. Verify the functionalities of basic digital gates and logic families

UNIT-1

DIODE THEORY AND APPLICATIONS Basic idea about forward bias, reverse bias and VI characteristics, ideal diode, surface mount diodes, Zener diode, half wave rectifier, full wave rectifier, bridge rectifier, RC and LC filters, Design of un-regulated DC power supply, clipping circuit, Clamping circuit, voltage multiplier circuit.

Light emitting diode (LED). Zener diode, Zener diode circuit for voltage regulation, Photo diode, Solar cell, PIN diode, Varactor, Schottky diode, Varistors, Tunnel diode

UNIT-2

BIPOLAR JUNCTION TRANSISTORS AND ITS BIASING BJT operation, BJT voltages and currents, CE, CB and CC characteristics, DC load line and bias point, base bias, emitter feedback bias, collector feedback bias, voltage divider bias, Thermal stability, biasing BJT switching circuits, transistor power dissipation and switching time

UNIT-3

AC ANALYSIS OF BJT CIRCUITS AND SMALL SIGNAL AMPLIFIER Coupling and bypass capacitors, AC load lines, Transistor models and parameters, Common emitter circuit analysis, common base circuit analysis, common collector circuit analysis, Comparison of CE, CB and CC circuits, Transistor as a switch

UNIT-4

Field effect transistors (FET) and its biasing Junction field effect transistors (JFET), Comparison of BJT and FET, JFET characteristics, FET, biasing in ohmic region and active region, Trans- conductance, amplification and switching, MOSFETs (D-type and E-type MOSFET), CMOS introduction

UNIT-5

Digital Circuits Basic gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR, Building AND, OR Gate with diodes, Digital logic families RTL, DTL, TTL, CMOS, Comparison of logic families

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, Fifth edition
- 2. Albert Malvino & David, "Electronic Principles", Tata McGraw-Hill, Seventh edition
- 3. R. L. Boylestad and L. Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education

Reference Books:

- 1.Jaccob Millman, Chritos Halkias, Chetan D Parikh, "Integrated Electronics", Tata McGraw-Hill, Second edition
- 2.Albert Malvino & David, "Problems and Solutions in Basic Electronics, McGraw Hill Education